Beispiel #1
0
def test_surface_mass_operator_inverse(actx_factory, name):
    actx = actx_factory()

    # {{{ cases

    if name == "2-1-ellipse":
        from mesh_data import EllipseMeshBuilder
        builder = EllipseMeshBuilder(radius=3.1, aspect_ratio=2.0)
    elif name == "spheroid":
        from mesh_data import SpheroidMeshBuilder
        builder = SpheroidMeshBuilder()
    else:
        raise ValueError("unknown geometry name: %s" % name)

    # }}}

    # {{{ convergence

    from pytools.convergence import EOCRecorder
    eoc = EOCRecorder()

    for resolution in builder.resolutions:
        mesh = builder.get_mesh(resolution, builder.mesh_order)
        discr = DiscretizationCollection(actx, mesh, order=builder.order)
        volume_discr = discr.discr_from_dd(dof_desc.DD_VOLUME)

        logger.info("ndofs:     %d", volume_discr.ndofs)
        logger.info("nelements: %d", volume_discr.mesh.nelements)

        # {{{ compute inverse mass

        dd = dof_desc.DD_VOLUME
        sym_f = sym.cos(4.0 * sym.nodes(mesh.ambient_dim, dd)[0])
        sym_op = sym.InverseMassOperator(dd, dd)(sym.MassOperator(dd, dd)(
            sym.var("f")))

        f = bind(discr, sym_f)(actx)
        f_inv = bind(discr, sym_op)(actx, f=f)

        inv_error = bind(
            discr,
            sym.norm(2,
                     sym.var("x") - sym.var("y")) / sym.norm(2, sym.var("y")))(
                         actx, x=f_inv, y=f)

        # }}}

        h_max = bind(
            discr,
            sym.h_max_from_volume(discr.ambient_dim, dim=discr.dim,
                                  dd=dd))(actx)
        eoc.add_data_point(h_max, inv_error)

    # }}}

    logger.info("inverse mass error\n%s", str(eoc))

    # NOTE: both cases give 1.0e-16-ish at the moment, but just to be on the
    # safe side, choose a slightly larger tolerance
    assert eoc.max_error() < 1.0e-14
Beispiel #2
0
def main(ctx_factory, dim=2, order=4, product_tag=None, visualize=False):
    cl_ctx = ctx_factory()
    queue = cl.CommandQueue(cl_ctx)
    actx = PyOpenCLArrayContext(queue)

    # {{{ parameters

    # sphere radius
    radius = 1.0
    # sphere resolution
    resolution = 64 if dim == 2 else 1

    # cfl
    dt_factor = 2.0
    # final time
    final_time = np.pi

    # velocity field
    sym_x = sym.nodes(dim)
    c = make_obj_array([-sym_x[1], sym_x[0], 0.0])[:dim]
    # flux
    flux_type = "lf"

    # }}}

    # {{{ discretization

    if dim == 2:
        from meshmode.mesh.generation import make_curve_mesh, ellipse
        mesh = make_curve_mesh(lambda t: radius * ellipse(1.0, t),
                               np.linspace(0.0, 1.0, resolution + 1), order)
    elif dim == 3:
        from meshmode.mesh.generation import generate_icosphere
        mesh = generate_icosphere(radius,
                                  order=4 * order,
                                  uniform_refinement_rounds=resolution)
    else:
        raise ValueError("unsupported dimension")

    discr_tag_to_group_factory = {}
    if product_tag == "none":
        product_tag = None
    else:
        product_tag = dof_desc.DISCR_TAG_QUAD

    from meshmode.discretization.poly_element import \
            PolynomialWarpAndBlendGroupFactory, \
            QuadratureSimplexGroupFactory

    discr_tag_to_group_factory[dof_desc.DISCR_TAG_BASE] = \
        PolynomialWarpAndBlendGroupFactory(order)

    if product_tag:
        discr_tag_to_group_factory[product_tag] = \
            QuadratureSimplexGroupFactory(order=4*order)

    from grudge import DiscretizationCollection
    discr = DiscretizationCollection(
        actx, mesh, discr_tag_to_group_factory=discr_tag_to_group_factory)

    volume_discr = discr.discr_from_dd(dof_desc.DD_VOLUME)
    logger.info("ndofs:     %d", volume_discr.ndofs)
    logger.info("nelements: %d", volume_discr.mesh.nelements)

    # }}}

    # {{{ symbolic operators

    def f_initial_condition(x):
        return x[0]

    from grudge.models.advection import SurfaceAdvectionOperator
    op = SurfaceAdvectionOperator(c, flux_type=flux_type, quad_tag=product_tag)

    bound_op = bind(discr, op.sym_operator())
    u0 = bind(discr, f_initial_condition(sym_x))(actx, t=0)

    def rhs(t, u):
        return bound_op(actx, t=t, u=u)

    # check velocity is tangential
    sym_normal = sym.surface_normal(dim, dim=dim - 1,
                                    dd=dof_desc.DD_VOLUME).as_vector()
    error = bind(discr, sym.norm(2, c.dot(sym_normal)))(actx)
    logger.info("u_dot_n:   %.5e", error)

    # }}}

    # {{{ time stepping

    # compute time step
    h_min = bind(discr, sym.h_max_from_volume(discr.ambient_dim,
                                              dim=discr.dim))(actx)
    dt = dt_factor * h_min / order**2
    nsteps = int(final_time // dt) + 1
    dt = final_time / nsteps + 1.0e-15

    logger.info("dt:        %.5e", dt)
    logger.info("nsteps:    %d", nsteps)

    from grudge.shortcuts import set_up_rk4
    dt_stepper = set_up_rk4("u", dt, u0, rhs)
    plot = Plotter(actx, discr, order, visualize=visualize)

    norm = bind(discr, sym.norm(2, sym.var("u")))
    norm_u = norm(actx, u=u0)

    step = 0

    event = dt_stepper.StateComputed(0.0, 0, 0, u0)
    plot(event, "fld-surface-%04d" % 0)

    if visualize and dim == 3:
        from grudge.shortcuts import make_visualizer
        vis = make_visualizer(discr)
        vis.write_vtk_file("fld-surface-velocity.vtu",
                           [("u", bind(discr, c)(actx)),
                            ("n", bind(discr, sym_normal)(actx))],
                           overwrite=True)

        df = dof_desc.DOFDesc(FACE_RESTR_INTERIOR)
        face_discr = discr.connection_from_dds(dof_desc.DD_VOLUME, df).to_discr

        face_normal = bind(
            discr, sym.normal(df, face_discr.ambient_dim,
                              dim=face_discr.dim))(actx)

        from meshmode.discretization.visualization import make_visualizer
        vis = make_visualizer(actx, face_discr)
        vis.write_vtk_file("fld-surface-face-normals.vtu",
                           [("n", face_normal)],
                           overwrite=True)

    for event in dt_stepper.run(t_end=final_time, max_steps=nsteps + 1):
        if not isinstance(event, dt_stepper.StateComputed):
            continue

        step += 1
        if step % 10 == 0:
            norm_u = norm(actx, u=event.state_component)
            plot(event, "fld-surface-%04d" % step)

        logger.info("[%04d] t = %.5f |u| = %.5e", step, event.t, norm_u)

    plot(event, "fld-surface-%04d" % step)
Beispiel #3
0
def test_convergence_advec(ctx_factory,
                           mesh_name,
                           mesh_pars,
                           op_type,
                           flux_type,
                           order,
                           visualize=False):
    """Test whether 2D advection actually converges"""

    cl_ctx = ctx_factory()
    queue = cl.CommandQueue(cl_ctx)
    actx = PyOpenCLArrayContext(queue)

    from pytools.convergence import EOCRecorder
    eoc_rec = EOCRecorder()

    for mesh_par in mesh_pars:
        if mesh_name == "segment":
            from meshmode.mesh.generation import generate_box_mesh
            mesh = generate_box_mesh([np.linspace(-1.0, 1.0, mesh_par)],
                                     order=order)

            dim = 1
            dt_factor = 1.0
        elif mesh_name == "disk":
            pytest.importorskip("meshpy")

            from meshpy.geometry import make_circle, GeometryBuilder
            from meshpy.triangle import MeshInfo, build

            geob = GeometryBuilder()
            geob.add_geometry(*make_circle(1))
            mesh_info = MeshInfo()
            geob.set(mesh_info)

            mesh_info = build(mesh_info, max_volume=mesh_par)

            from meshmode.mesh.io import from_meshpy
            mesh = from_meshpy(mesh_info, order=1)
            dim = 2
            dt_factor = 4
        elif mesh_name.startswith("rect"):
            dim = int(mesh_name[4:])
            from meshmode.mesh.generation import generate_regular_rect_mesh
            mesh = generate_regular_rect_mesh(a=(-0.5, ) * dim,
                                              b=(0.5, ) * dim,
                                              n=(mesh_par, ) * dim,
                                              order=4)

            if dim == 2:
                dt_factor = 4
            elif dim == 3:
                dt_factor = 2
            else:
                raise ValueError("dt_factor not known for %dd" % dim)

        else:
            raise ValueError("invalid mesh name: " + mesh_name)

        v = np.array([0.27, 0.31, 0.1])[:dim]
        norm_v = la.norm(v)

        def f(x):
            return sym.sin(10 * x)

        def u_analytic(x):
            return f(-v.dot(x) / norm_v + sym.var("t", sym.DD_SCALAR) * norm_v)

        from grudge.models.advection import (StrongAdvectionOperator,
                                             WeakAdvectionOperator)
        discr = DGDiscretizationWithBoundaries(actx, mesh, order=order)
        op_class = {
            "strong": StrongAdvectionOperator,
            "weak": WeakAdvectionOperator,
        }[op_type]
        op = op_class(v,
                      inflow_u=u_analytic(sym.nodes(dim, sym.BTAG_ALL)),
                      flux_type=flux_type)

        bound_op = bind(discr, op.sym_operator())

        u = bind(discr, u_analytic(sym.nodes(dim)))(actx, t=0)

        def rhs(t, u):
            return bound_op(t=t, u=u)

        if dim == 3:
            final_time = 0.1
        else:
            final_time = 0.2

        h_max = bind(discr, sym.h_max_from_volume(discr.ambient_dim))(actx)
        dt = dt_factor * h_max / order**2
        nsteps = (final_time // dt) + 1
        dt = final_time / nsteps + 1e-15

        from grudge.shortcuts import set_up_rk4
        dt_stepper = set_up_rk4("u", dt, u, rhs)

        last_u = None

        from grudge.shortcuts import make_visualizer
        vis = make_visualizer(discr, vis_order=order)

        step = 0

        for event in dt_stepper.run(t_end=final_time):
            if isinstance(event, dt_stepper.StateComputed):
                step += 1
                logger.debug("[%04d] t = %.5f", step, event.t)

                last_t = event.t
                last_u = event.state_component

                if visualize:
                    vis.write_vtk_file("fld-%s-%04d.vtu" % (mesh_par, step),
                                       [("u", event.state_component)])

        error_l2 = bind(discr,
                        sym.norm(2,
                                 sym.var("u") - u_analytic(sym.nodes(dim))))(
                                     t=last_t, u=last_u)
        logger.info("h_max %.5e error %.5e", h_max, error_l2)
        eoc_rec.add_data_point(h_max, error_l2)

    logger.info(
        "\n%s", eoc_rec.pretty_print(abscissa_label="h",
                                     error_label="L2 Error"))

    assert eoc_rec.order_estimate() > order
Beispiel #4
0
def test_surface_divergence_theorem(actx_factory, mesh_name, visualize=False):
    r"""Check the surface divergence theorem.

        .. math::

            \int_Sigma \phi \nabla_i f_i =
            \int_\Sigma \nabla_i \phi f_i +
            \int_\Sigma \kappa \phi f_i n_i +
            \int_{\partial \Sigma} \phi f_i m_i

        where :math:`n_i` is the surface normal and :class:`m_i` is the
        face normal (which should be orthogonal to both the surface normal
        and the face tangent).
    """
    actx = actx_factory()

    # {{{ cases

    if mesh_name == "2-1-ellipse":
        from mesh_data import EllipseMeshBuilder
        builder = EllipseMeshBuilder(radius=3.1, aspect_ratio=2.0)
    elif mesh_name == "spheroid":
        from mesh_data import SpheroidMeshBuilder
        builder = SpheroidMeshBuilder()
    elif mesh_name == "circle":
        from mesh_data import EllipseMeshBuilder
        builder = EllipseMeshBuilder(radius=1.0, aspect_ratio=1.0)
    elif mesh_name == "starfish":
        from mesh_data import StarfishMeshBuilder
        builder = StarfishMeshBuilder()
    elif mesh_name == "sphere":
        from mesh_data import SphereMeshBuilder
        builder = SphereMeshBuilder(radius=1.0, mesh_order=16)
    else:
        raise ValueError("unknown mesh name: %s" % mesh_name)

    # }}}

    # {{{ convergene

    def f(x):
        return flat_obj_array(
            sym.sin(3 * x[1]) + sym.cos(3 * x[0]) + 1.0,
            sym.sin(2 * x[0]) + sym.cos(x[1]),
            3.0 * sym.cos(x[0] / 2) + sym.cos(x[1]),
        )[:ambient_dim]

    from pytools.convergence import EOCRecorder
    eoc_global = EOCRecorder()
    eoc_local = EOCRecorder()

    theta = np.pi / 3.33
    ambient_dim = builder.ambient_dim
    if ambient_dim == 2:
        mesh_rotation = np.array([
            [np.cos(theta), -np.sin(theta)],
            [np.sin(theta), np.cos(theta)],
        ])
    else:
        mesh_rotation = np.array([
            [1.0, 0.0, 0.0],
            [0.0, np.cos(theta), -np.sin(theta)],
            [0.0, np.sin(theta), np.cos(theta)],
        ])

    mesh_offset = np.array([0.33, -0.21, 0.0])[:ambient_dim]

    for i, resolution in enumerate(builder.resolutions):
        from meshmode.mesh.processing import affine_map
        from meshmode.discretization.connection import FACE_RESTR_ALL

        mesh = builder.get_mesh(resolution, builder.mesh_order)
        mesh = affine_map(mesh, A=mesh_rotation, b=mesh_offset)

        from meshmode.discretization.poly_element import \
                QuadratureSimplexGroupFactory
        discr = DiscretizationCollection(actx,
                                         mesh,
                                         order=builder.order,
                                         discr_tag_to_group_factory={
                                             "product":
                                             QuadratureSimplexGroupFactory(
                                                 2 * builder.order)
                                         })

        volume = discr.discr_from_dd(dof_desc.DD_VOLUME)
        logger.info("ndofs:     %d", volume.ndofs)
        logger.info("nelements: %d", volume.mesh.nelements)

        dd = dof_desc.DD_VOLUME
        dq = dd.with_discr_tag("product")
        df = dof_desc.as_dofdesc(FACE_RESTR_ALL)
        ambient_dim = discr.ambient_dim
        dim = discr.dim

        # variables
        sym_f = f(sym.nodes(ambient_dim, dd=dd))
        sym_f_quad = f(sym.nodes(ambient_dim, dd=dq))
        sym_kappa = sym.summed_curvature(ambient_dim, dim=dim, dd=dq)
        sym_normal = sym.surface_normal(ambient_dim, dim=dim,
                                        dd=dq).as_vector()

        sym_face_normal = sym.normal(df, ambient_dim, dim=dim - 1)
        sym_face_f = sym.project(dd, df)(sym_f)

        # operators
        sym_stiff = sum(
            sym.StiffnessOperator(d)(f) for d, f in enumerate(sym_f))
        sym_stiff_t = sum(
            sym.StiffnessTOperator(d)(f) for d, f in enumerate(sym_f))
        sym_k = sym.MassOperator(dq,
                                 dd)(sym_kappa * sym_f_quad.dot(sym_normal))
        sym_flux = sym.FaceMassOperator()(sym_face_f.dot(sym_face_normal))

        # sum everything up
        sym_op_global = sym.NodalSum(dd)(sym_stiff - (sym_stiff_t + sym_k))
        sym_op_local = sym.ElementwiseSumOperator(dd)(sym_stiff -
                                                      (sym_stiff_t + sym_k +
                                                       sym_flux))

        # evaluate
        op_global = bind(discr, sym_op_global)(actx)
        op_local = bind(discr, sym_op_local)(actx)

        err_global = abs(op_global)
        err_local = bind(discr, sym.norm(np.inf, sym.var("x")))(actx,
                                                                x=op_local)
        logger.info("errors: global %.5e local %.5e", err_global, err_local)

        # compute max element size
        h_max = bind(
            discr,
            sym.h_max_from_volume(discr.ambient_dim, dim=discr.dim,
                                  dd=dd))(actx)
        eoc_global.add_data_point(h_max, err_global)
        eoc_local.add_data_point(h_max, err_local)

        if visualize:
            from grudge.shortcuts import make_visualizer
            vis = make_visualizer(discr, vis_order=builder.order)

            filename = f"surface_divergence_theorem_{mesh_name}_{i:04d}.vtu"
            vis.write_vtk_file(filename, [("r", actx.np.log10(op_local))],
                               overwrite=True)

    # }}}

    order = min(builder.order, builder.mesh_order) - 0.5
    logger.info("\n%s", str(eoc_global))
    logger.info("\n%s", str(eoc_local))

    assert eoc_global.max_error() < 1.0e-12 \
            or eoc_global.order_estimate() > order - 0.5

    assert eoc_local.max_error() < 1.0e-12 \
            or eoc_local.order_estimate() > order - 0.5
Beispiel #5
0
def test_mass_surface_area(actx_factory, name):
    actx = actx_factory()

    # {{{ cases

    if name == "2-1-ellipse":
        from mesh_data import EllipseMeshBuilder
        builder = EllipseMeshBuilder(radius=3.1, aspect_ratio=2.0)
        surface_area = _ellipse_surface_area(builder.radius,
                                             builder.aspect_ratio)
    elif name == "spheroid":
        from mesh_data import SpheroidMeshBuilder
        builder = SpheroidMeshBuilder()
        surface_area = _spheroid_surface_area(builder.radius,
                                              builder.aspect_ratio)
    elif name == "box2d":
        from mesh_data import BoxMeshBuilder
        builder = BoxMeshBuilder(ambient_dim=2)
        surface_area = 1.0
    elif name == "box3d":
        from mesh_data import BoxMeshBuilder
        builder = BoxMeshBuilder(ambient_dim=3)
        surface_area = 1.0
    else:
        raise ValueError("unknown geometry name: %s" % name)

    # }}}

    # {{{ convergence

    from pytools.convergence import EOCRecorder
    eoc = EOCRecorder()

    for resolution in builder.resolutions:
        mesh = builder.get_mesh(resolution, builder.mesh_order)
        discr = DiscretizationCollection(actx, mesh, order=builder.order)
        volume_discr = discr.discr_from_dd(dof_desc.DD_VOLUME)

        logger.info("ndofs:     %d", volume_discr.ndofs)
        logger.info("nelements: %d", volume_discr.mesh.nelements)

        # {{{ compute surface area

        dd = dof_desc.DD_VOLUME
        sym_op = sym.NodalSum(dd)(sym.MassOperator(dd, dd)(sym.Ones(dd)))
        approx_surface_area = bind(discr, sym_op)(actx)

        logger.info("surface: got {:.5e} / expected {:.5e}".format(
            approx_surface_area, surface_area))
        area_error = abs(approx_surface_area -
                         surface_area) / abs(surface_area)

        # }}}

        h_max = bind(
            discr,
            sym.h_max_from_volume(discr.ambient_dim, dim=discr.dim,
                                  dd=dd))(actx)
        eoc.add_data_point(h_max, area_error + 1.0e-16)

    # }}}

    logger.info("surface area error\n%s", str(eoc))

    assert eoc.max_error() < 1.0e-14 \
            or eoc.order_estimate() > builder.order