# model.labels_ph # model.is_training_ph # # Metrics # model.loss # model.loss_l2 # model.success_rate # model.number_of_errors # Core libraries import numpy as np import tensorflow as tf # G-splinet specific import importlib import gsplinets_tf as gsplinets layers = gsplinets.layers('R2R+') class CelebALandmarks_FixedScale: def __init__( self, args={ 'N_h': 1, 'N_k_h': 1, 'N_c': 32, 'h_range': 2, 'h_origin_at': 'center', 'h_kernel_type': 'dense' }): ## Check arguments
# model.is_training_ph # # Metrics # model.loss # model.loss_l2 # model.success_rate # model.number_of_errors # Core libraries import numpy as np import tensorflow as tf # G-splinet specific import importlib import gsplinets_tf as gsplinets layers = gsplinets.layers('SE2') class PCAM_SE2_norotaugm: def __init__(self, args = {'N_h':1,'N_k_h':1,'N_c':32,'h_kernel_type':'dense'}): ## Check arguments N_h = int(args['N_h']) # 1, 4, 8, 16 N_k_h = int(args['N_k_h']) N_c = int(args['N_c']) # 36, 18, 13, 19 h_kernel_type = args['h_kernel_type'] # 'dense', 'atrous', 'localized' ## Some attributes self.all_weights={} self.all_kernels={}