def setup_streamer(self, width, height): fps = Fraction(FPS) fps_str = fraction_to_str(fps) caps = f'video/x-raw,format={VIDEO_FORMAT},width={width},height={height},framerate={fps_str}' # Converts list of plugins to gst-launch string # ['plugin_1', 'plugin_2', 'plugin_3'] => plugin_1 ! plugin_2 ! plugin_3 default_pipeline = utils.to_gst_string([ f'appsrc caps={caps}', 'videoscale method=1 add-borders=false', 'video/x-raw,width=1280,height=720', 'videoconvert', 'v4l2sink device=/dev/video0 sync=false' ]) self.duration = 10**9 / (fps.numerator / fps.denominator) self.appsrc = self.pts = self.pipeline = None self.context = GstContext() self.context.startup() self.pipeline = GstPipeline(default_pipeline) def on_pipeline_init(other_self): """Setup AppSrc element""" self.appsrc = other_self.get_by_cls(GstApp.AppSrc)[0] # get AppSrc # instructs appsrc that we will be dealing with timed buffer self.appsrc.set_property("format", Gst.Format.TIME) # instructs appsrc to block pushing buffers until ones in queue are preprocessed # allows to avoid huge queue internal queue size in appsrc self.appsrc.set_property("block", True) self.appsrc.set_property("is-live", True) # set input format (caps) self.appsrc.set_caps(Gst.Caps.from_string(caps)) # override on_pipeline_init to set specific properties before launching pipeline self.pipeline._on_pipeline_init = on_pipeline_init.__get__( self.pipeline) # noqa try: self.pipeline.startup() self.appsrc = self.pipeline.get_by_cls( GstApp.AppSrc)[0] # GstApp.AppSrc self.pts = 0 # buffers presentation timestamp except Exception as e: print("Error: ", e)
print("--- Before ---") print("Max rank plugin:", max_rank_element.get_name(), "(", max_rank_element.get_rank(), ")") print("Rank of target plugin:", target_element.get_name(), "(", target_element.get_rank(), ")") print("--- After ---") # Increase target's element rank target_element.set_rank(max_rank_element.get_rank() + 1) print("Rank of target plugin:", target_element.get_name(), "(", target_element.get_rank(), ")") pipeline_str = pipeline with GstContext(), GstPipeline(pipeline_str) as p: try: while not p.is_done: time.sleep(1) except Exception: pass finally: # print all elements and notify of target plugin presence elements = [ el.get_factory().get_name() for el in p.pipeline.iterate_recurse() ] print("All elements: ", elements) print("Target element ({}) is {}".format( target_element_name, 'present' if target_element_name in set(elements) else "missing"))
array = array.reshape(h, w, c).squeeze() return np.squeeze(array) # remove single dimension if exists def on_buffer(sink: GstApp.AppSink, data: typ.Any) -> Gst.FlowReturn: """Callback on 'new-sample' signal""" # Emit 'pull-sample' signal # https://lazka.github.io/pgi-docs/GstApp-1.0/classes/AppSink.html#GstApp.AppSink.signals.pull_sample sample = sink.emit("pull-sample") # Gst.Sample if isinstance(sample, Gst.Sample): array = extract_buffer(sample) print( "Received {type} with shape {shape} of type {dtype}".format(type=type(array), shape=array.shape, dtype=array.dtype)) return Gst.FlowReturn.OK return Gst.FlowReturn.ERROR with GstContext(): # create GstContext (hides MainLoop) # create GstPipeline (hides Gst.parse_launch) with GstPipeline(command) as pipeline: appsink = pipeline.get_by_cls(GstApp.AppSink)[0] # get AppSink # subscribe to <new-sample> signal appsink.connect("new-sample", on_buffer, None) while not pipeline.is_done: time.sleep(.1)
import time import argparse from gstreamer import GstPipeline, GstContext DEFAULT_PIPELINE = "videotestsrc num-buffers=100 ! fakesink sync=false" ap = argparse.ArgumentParser() ap.add_argument("-p", "--pipeline", required=True, default=DEFAULT_PIPELINE, help="Gstreamer pipeline without gst-launch") args = vars(ap.parse_args()) if __name__ == '__main__': with GstContext(), GstPipeline(args['pipeline']) as pipeline: while not pipeline.is_done: time.sleep(.1)
from gstreamer import GstVideoSource, GstVideoSink, GstVideo, Gst, GLib, GstContext WIDTH, HEIGHT, CHANNELS = 640, 480, 3 NUM_BUFFERS = 1000 VIDEO_FORMAT = GstVideo.VideoFormat.RGB video_format_str = GstVideo.VideoFormat.to_string(VIDEO_FORMAT) caps_filter = "capsfilter caps=video/x-raw,format={video_format_str},width={WIDTH},height={HEIGHT}".format( **locals()) capture_cmd = "videotestsrc num-buffers={NUM_BUFFERS} ! {caps_filter} ! appsink emit-signals=True sync=false".format( **locals()) display_cmd = "appsrc emit-signals=True is-live=True ! videoconvert ! gtksink sync=false" with GstContext(), GstVideoSource(capture_cmd) as capture, \ GstVideoSink(display_cmd, width=WIDTH, height=HEIGHT, video_frmt=VIDEO_FORMAT) as display: # wait pipeline to initialize max_num_tries, num_tries = 5, 0 while not display.is_active and num_tries <= max_num_tries: time.sleep(.1) num_tries += 1 while not capture.is_done or capture.queue_size > 0: buffer = capture.pop() if buffer: display.push(buffer.data, pts=buffer.pts, dts=buffer.dts, offset=buffer.offset)
class Generator(BaseNode): def __init__(self, params): super().__init__() self.params = params # Network attributes self.Gs = self.Gs_kwargs = None self.classifier = None # Latent and noise attributes self.noise_values = self.noise_vars = self.latents = None self.dlatents = self.chroma = None self.origin = self.noise_values2 = self.rotation = None self.mfcc_buffer = None # Streamer attributes self.duration = self.appsrc = self.pipeline = None self.context = self.pts = None def setup_network(self): tflib.init_tf() with dnnlib.util.open_url(NETWORK) as fp: _G, _D, self.Gs = pickle.load(fp) del _G del _D self.Gs_kwargs = { 'output_transform': dict(func=tflib.convert_images_to_uint8, nchw_to_nhwc=True), 'randomize_noise': False, 'truncation_psi': 1.0, } dim_noise = self.Gs.input_shape[1] width = self.Gs.output_shape[2] height = self.Gs.output_shape[3] print('Building graph for the first time') labels = np.zeros((1, 9), dtype='float32') _ = self.Gs.run(np.zeros((1, dim_noise), dtype='float32'), labels, **self.Gs_kwargs) self.classifier = load_model() return dim_noise, width, height def setup_latents(self, dim_noise): self.origin = np.random.randn(1, dim_noise).astype('float32') self.noise_vars = [ var for name, var in self.Gs.components.synthesis.vars.items() if name.startswith('noise') ] self.noise_values = [ np.random.randn(*var.shape.as_list()).astype('float32') for var in self.noise_vars ] self.noise_values2 = [ np.random.randn(*var.shape.as_list()).astype('float32') for var in self.noise_vars ] tflib.set_vars({ var: self.noise_values[idx] for idx, var in enumerate(self.noise_vars) }) self.latents = np.random.randn(1, dim_noise).astype('float32') self.dlatents = self.Gs.components.mapping.run(self.latents, None) self.chroma = random_orthonormal(12, dim_noise) self.rotation = random_rotation() self.rotation = fractional_rotation(self.rotation, 1 / 4) self.mfcc_buffer = np.zeros((64, 64), dtype='float32') def setup_streamer(self, width, height): fps = Fraction(FPS) fps_str = fraction_to_str(fps) caps = f'video/x-raw,format={VIDEO_FORMAT},width={width},height={height},framerate={fps_str}' # Converts list of plugins to gst-launch string # ['plugin_1', 'plugin_2', 'plugin_3'] => plugin_1 ! plugin_2 ! plugin_3 default_pipeline = utils.to_gst_string([ f'appsrc caps={caps}', 'videoscale method=1 add-borders=false', 'video/x-raw,width=1280,height=720', 'videoconvert', 'v4l2sink device=/dev/video0 sync=false' ]) self.duration = 10**9 / (fps.numerator / fps.denominator) self.appsrc = self.pts = self.pipeline = None self.context = GstContext() self.context.startup() self.pipeline = GstPipeline(default_pipeline) def on_pipeline_init(other_self): """Setup AppSrc element""" self.appsrc = other_self.get_by_cls(GstApp.AppSrc)[0] # get AppSrc # instructs appsrc that we will be dealing with timed buffer self.appsrc.set_property("format", Gst.Format.TIME) # instructs appsrc to block pushing buffers until ones in queue are preprocessed # allows to avoid huge queue internal queue size in appsrc self.appsrc.set_property("block", True) self.appsrc.set_property("is-live", True) # set input format (caps) self.appsrc.set_caps(Gst.Caps.from_string(caps)) # override on_pipeline_init to set specific properties before launching pipeline self.pipeline._on_pipeline_init = on_pipeline_init.__get__( self.pipeline) # noqa try: self.pipeline.startup() self.appsrc = self.pipeline.get_by_cls( GstApp.AppSrc)[0] # GstApp.AppSrc self.pts = 0 # buffers presentation timestamp except Exception as e: print("Error: ", e) def setup(self): print('Loading network checkpoint...') dim_noise, width, height = self.setup_network() print('Setting up initial latents and noise...') self.setup_latents(dim_noise) print('Setting up streamer...') self.setup_streamer(width, height) print('Ready!') def stream_frame(self, image): try: gst_buffer = utils.ndarray_to_gst_buffer(image) # set pts and duration to be able to record video, calculate fps self.pts += self.duration # Increase pts by duration gst_buffer.pts = self.pts gst_buffer.duration = self.duration # emit <push-buffer> event with Gst.Buffer self.appsrc.emit("push-buffer", gst_buffer) except Exception as e: print("Error: ", e) def task(self): onset = self.params['drums_onset'].value if onset > 0: print(f'onset={onset}') for idx in range(self.chroma.shape[0]): self.chroma[idx] = self.rotation @ self.chroma[idx].T chords_chroma = np.frombuffer(self.params['chords_chroma'], dtype='float32') chords_chroma = np.sum(self.chroma * chords_chroma[:, np.newaxis], axis=0) self.mfcc_buffer[:-1] = self.mfcc_buffer[1:] self.mfcc_buffer[-1] = self.params['chords_mfcc'] # drums_amp = self.params['drums_amp'].value # drums_onset = self.params['drums_onset'].value # drums_centroid = self.params['drums_centroid'].value # val = drums_onset * drums_amp * drums_centroid # # nv = [val * n1 + (1 - val) * n2 for n1, n2 in zip(self.noise_values, self.noise_values2)] # tflib.set_vars({var: nv[idx] for idx, var in enumerate(self.noise_vars)}) # TODO: sync wth mfcc data from SuperCollider _labels = self.classifier.predict_proba( self.mfcc_buffer[np.newaxis, :, :, np.newaxis]) labels = np.zeros_like(_labels) labels[0, _labels[0].argmax()] = 1 self.dlatents = self.Gs.components.mapping.run( chords_chroma[np.newaxis, :], labels) for i in range(14): self.dlatents[0, i, :] += chords_chroma images = self.Gs.components.synthesis.run(self.dlatents, **self.Gs_kwargs) # images = self.Gs.run(chords_chroma[np.newaxis, :], self.labels, **self.Gs_kwargs) self.stream_frame(images) def teardown(self): # emit <end-of-stream> event self.appsrc.emit("end-of-stream") while not self.pipeline.is_done: sleep(.05) self.pipeline.shutdown() self.context.shutdown()
import time from random import randint from gstreamer import GstPipeline, GstContext if __name__ == '__main__': with GstContext(): pipelines = [ GstPipeline("videotestsrc num-buffers={} ! gtksink".format( randint(50, 300))) for _ in range(5) ] for p in pipelines: p.startup() while any(p.is_active for p in pipelines): time.sleep(.5) for p in pipelines: p.shutdown()
import numpy as np from gstreamer import GstVideoSink, GstVideo, GstContext WIDTH, HEIGHT, CHANNELS = 640, 480, 3 NUM_BUFFERS = 1000 VIDEO_FORMAT = GstVideo.VideoFormat.RGB command = "appsrc emit-signals=True is-live=True ! videoconvert ! gtksink sync=false" with GstContext(), GstVideoSink(command, width=WIDTH, height=HEIGHT, video_frmt=VIDEO_FORMAT) as pipeline: for _ in range(NUM_BUFFERS): buffer = np.random.randint(low=0, high=255, size=( HEIGHT, WIDTH, CHANNELS), dtype=np.uint8) pipeline.push(buffer) while pipeline.is_done: pass print("Displayed {} buffers".format(pipeline.total_buffers_count))
import numpy as np import time import threading from gstreamer import GstVideoSource, GstVideo, Gst, GLib, GstContext WIDTH, HEIGHT, CHANNELS = 640, 480, 3 NUM_BUFFERS = 50 VIDEO_FORMAT = GstVideo.VideoFormat.RGB video_format_str = GstVideo.VideoFormat.to_string(VIDEO_FORMAT) caps_filter = "capsfilter caps=video/x-raw,format={video_format_str},width={WIDTH},height={HEIGHT}".format( **locals()) command = "videotestsrc num-buffers={NUM_BUFFERS} ! {caps_filter} ! appsink emit-signals=True sync=false".format( **locals()) last_buffer = None with GstContext(), GstVideoSource(command) as pipeline: while pipeline.is_active or pipeline.queue_size > 0: buffer = pipeline.pop() if buffer: print("{}: shape {}".format(Gst.TIME_ARGS(buffer.pts), buffer.data.shape)) last_buffer = buffer print("Read {} buffers".format(last_buffer.offset))