def apply_Sim3(self, aSb: Similarity3) -> "GtsfmData": """Assume current tracks and cameras are in frame "b", then transport them to frame "a". Returns: New GtsfmData object which has been transformed from frame a to frame b. """ bTi_list = self.get_camera_poses() aTi_list = [aSb.transformFrom(bTi) if bTi is not None else None for bTi in bTi_list] aligned_data = GtsfmData(number_images=self.number_images()) # Update the camera poses to their aligned poses, but use the previous calibration. for i, aTi in enumerate(aTi_list): if aTi is None: continue calibration = self.get_camera(i).calibration() camera_type = gtsfm_types.get_camera_class_for_calibration(calibration) aligned_data.add_camera(i, camera_type(aTi, calibration)) # Align estimated tracks to ground truth. for j in range(self.number_tracks()): # Align each 3d point track_b = self.get_track(index=j) # Place into the "a" reference frame pt_a = aSb.transformFrom(track_b.point3()) track_a = SfmTrack(pt_a) # Copy over the 2d measurements directly into the new track. for k in range(track_b.numberMeasurements()): i, uv = track_b.measurement(k) track_a.addMeasurement(i, uv) aligned_data.add_track(track_a) return aligned_data
def test_align_poses_along_straight_line_gauge(self): """Test if Align Pose3Pairs method can account for gauge ambiguity. Scenario: 3 object poses with gauge ambiguity (2x scale) world frame has poses rotated about z-axis (90 degree yaw) world and egovehicle frame translated by 11 meters w.r.t. each other """ Rz90 = Rot3.Rz(np.deg2rad(90)) # Create source poses (three objects o1, o2, o3 living in the egovehicle "e" frame) # Suppose they are 3d cuboids detected by an onboard sensor in the egovehicle frame eTo0 = Pose3(Rot3(), np.array([1, 0, 0])) eTo1 = Pose3(Rot3(), np.array([2, 0, 0])) eTo2 = Pose3(Rot3(), np.array([4, 0, 0])) eToi_list = [eTo0, eTo1, eTo2] # Create destination poses # (same three objects, but instead living in the world/city "w" frame) wTo0 = Pose3(Rz90, np.array([0, 12, 0])) wTo1 = Pose3(Rz90, np.array([0, 14, 0])) wTo2 = Pose3(Rz90, np.array([0, 18, 0])) wToi_list = [wTo0, wTo1, wTo2] we_pairs = Pose3Pairs(list(zip(wToi_list, eToi_list))) # Recover the transformation wSe (i.e. world_S_egovehicle) wSe = Similarity3.Align(we_pairs) for wToi, eToi in zip(wToi_list, eToi_list): self.gtsamAssertEquals(wToi, wSe.transformFrom(eToi))
def align_poses_sim3(aTi_list: List[Pose3], bTi_list: List[Pose3]) -> Similarity3: """Align two pose graphs via similarity transformation. Note: poses cannot be missing/invalid. We force SIM(3) alignment rather than SE(3) alignment. We assume the two trajectories are of the exact same length. Args: aTi_list: reference poses in frame "a" which are the targets for alignment bTi_list: input poses which need to be aligned to frame "a" Returns: aSb: Similarity(3) object that aligns the two pose graphs. """ n_to_align = len(aTi_list) assert len(aTi_list) == len(bTi_list) assert n_to_align >= 2, "SIM(3) alignment uses at least 2 frames" ab_pairs = Pose3Pairs(list(zip(aTi_list, bTi_list))) aSb = Similarity3.Align(ab_pairs) if np.isnan(aSb.scale()) or aSb.scale() == 0: # we have run into a case where points have no translation between them (i.e. panorama). # We will first align the rotations and then align the translation by using centroids. # TODO: handle it in GTSAM # align the rotations first, so that we can find the translation between the two panoramas aSb = Similarity3(aSb.rotation(), np.zeros((3, )), 1.0) aTi_list_rot_aligned = [aSb.transformFrom(bTi) for bTi in bTi_list] # fit a single translation motion to the centroid aTi_centroid = np.array([aTi.translation() for aTi in aTi_list]).mean(axis=0) aTi_rot_aligned_centroid = np.array( [aTi.translation() for aTi in aTi_list_rot_aligned]).mean(axis=0) # construct the final SIM3 transform aSb = Similarity3(aSb.rotation(), aTi_centroid - aTi_rot_aligned_centroid, 1.0) return aSb
def test_align_poses_on_panorama_after_sim3_transform(self): """Test for alignment of poses after applying a forward motion transformation.""" translation_shift = np.array([0, 5, 0]) rotation_shift = Rot3.RzRyRx(0, 0, np.deg2rad(30)) scaling_factor = 1.0 aTi_list = sample_poses.PANORAMA_GLOBAL_POSES bSa = Similarity3(rotation_shift, translation_shift, scaling_factor) bTi_list = [bSa.transformFrom(x) for x in aTi_list] aTi_list_ = geometry_comparisons.align_poses_sim3(aTi_list, bTi_list) self.__assert_equality_on_pose3s(aTi_list_, aTi_list)
def test_align_poses_after_sim3_transform(self): """Test for alignment of poses after applying a SIM3 transformation.""" translation_shift = np.array([5, 10, -5]) rotation_shift = Rot3.RzRyRx(0, 0, np.deg2rad(30)) scaling_factor = 0.7 transform = Similarity3(rotation_shift, translation_shift, scaling_factor) ref_list = [ transform.transformFrom(x) for x in sample_poses.CIRCLE_TWO_EDGES_GLOBAL_POSES ] computed_poses = geometry_comparisons.align_poses_sim3( sample_poses.CIRCLE_TWO_EDGES_GLOBAL_POSES, ref_list) self.__assert_equality_on_pose3s( computed_poses, sample_poses.CIRCLE_TWO_EDGES_GLOBAL_POSES)
def align_estimated_gtsfm_data( ba_input: GtsfmData, ba_output: GtsfmData, gt_pose_graph: List[Optional[Pose3]] ) -> Tuple[GtsfmData, GtsfmData, List[Optional[Pose3]]]: """Creates modified GtsfmData objects that emulate ba_input and ba_output but with point cloud and camera frustums aligned to the x,y,z axes. Also transforms GT camera poses to be aligned to axes. Args: ba_input: GtsfmData input to bundle adjustment. ba_output: GtsfmData output from bundle adjustment. gt_pose_graph: list of GT camera poses. Returns: Updated ba_input GtsfmData object aligned to axes. Updated ba_output GtsfmData object aligned to axes. Updated gt_pose_graph with GT poses aligned to axes. """ walignedTw = ellipsoid_utils.get_ortho_axis_alignment_transform(ba_output) walignedSw = Similarity3(R=walignedTw.rotation(), t=walignedTw.translation(), s=1.0) ba_input = ba_input.apply_Sim3(walignedSw) ba_output = ba_output.apply_Sim3(walignedSw) gt_pose_graph = [walignedSw.transformFrom(wTi) if wTi is not None else None for wTi in gt_pose_graph] return ba_input, ba_output, gt_pose_graph
def test_align_poses_scaled_squares(self): """Test if Align Pose3Pairs method can account for gauge ambiguity. Make sure a big and small square can be aligned. The u's represent a big square (10x10), and v's represents a small square (4x4). Scenario: 4 object poses with gauge ambiguity (2.5x scale) """ # 0, 90, 180, and 270 degrees yaw R0 = Rot3.Rz(np.deg2rad(0)) R90 = Rot3.Rz(np.deg2rad(90)) R180 = Rot3.Rz(np.deg2rad(180)) R270 = Rot3.Rz(np.deg2rad(270)) aTi0 = Pose3(R0, np.array([2, 3, 0])) aTi1 = Pose3(R90, np.array([12, 3, 0])) aTi2 = Pose3(R180, np.array([12, 13, 0])) aTi3 = Pose3(R270, np.array([2, 13, 0])) aTi_list = [aTi0, aTi1, aTi2, aTi3] bTi0 = Pose3(R0, np.array([4, 3, 0])) bTi1 = Pose3(R90, np.array([8, 3, 0])) bTi2 = Pose3(R180, np.array([8, 7, 0])) bTi3 = Pose3(R270, np.array([4, 7, 0])) bTi_list = [bTi0, bTi1, bTi2, bTi3] ab_pairs = Pose3Pairs(list(zip(aTi_list, bTi_list))) # Recover the transformation wSe (i.e. world_S_egovehicle) aSb = Similarity3.Align(ab_pairs) for aTi, bTi in zip(aTi_list, bTi_list): self.gtsamAssertEquals(aTi, aSb.transformFrom(bTi))
def test_get_ortho_axis_alignment_transform(self) -> None: """Tests the get_ortho_axis_alignment_transform() function with a GtsfmData object containing 3 camera frustums and 6 points in the point cloud. All points lie on z=0 plane. All frustums lie on z=2 plane and look down on the z=0 plane. sample_data: output_data: y y | o | | | o | o | c c | c | ------------- x ==> --o--c-----c--o-- x o | c | | o o | | c = point at (xi,yi,0) with a camera frustum at (xi,yi,2) o = point at (xi,yi,0) """ sample_data = GtsfmData(number_images=3) default_intrinsics = Cal3Bundler(fx=100, k1=0, k2=0, u0=0, v0=0) # Add 3 camera frustums to sample_data (looking down at z=0 plane) cam_translations = np.array([[-1, 1, 2], [1, 1, 2], [1, -1, 2]]) for i in range(len(cam_translations)): camera = PinholeCameraCal3Bundler( Pose3(Rot3(), cam_translations[i, :]), default_intrinsics) sample_data.add_camera(i, camera) # Add 6 tracks to sample_data # fmt: off points3d = np.array([ [1, 1, 0], [-1, 1, 0], [-2, 2, 0], [-1, -1, 0], [1, -1, 0], [2, -2, 0], [5, 5, 0] # represents an outlier in this set of points ]) # fmt: on for pt_3d in points3d: sample_data.add_track(SfmTrack(pt_3d)) # Apply alignment transformation to sample_data walignedTw = ellipsoid_utils.get_ortho_axis_alignment_transform( sample_data) walignedSw = Similarity3(R=walignedTw.rotation(), t=walignedTw.translation(), s=1.0) sample_data = sample_data.apply_Sim3(walignedSw) # Verify correct 3d points. computed_3d_points = np.array([ sample_data.get_track(i).point3() for i in range(sample_data.number_tracks()) ]) expected_3d_points = np.array([ [0, np.sqrt(2), 0], [-np.sqrt(2), 0, 0], [-2 * np.sqrt(2), 0, 0], [0, -np.sqrt(2), 0], [np.sqrt(2), 0, 0], [2 * np.sqrt(2), 0, 0], [0, 5 * np.sqrt(2), 0], ]) npt.assert_almost_equal(computed_3d_points, expected_3d_points, decimal=3) # Verify correct camera poses. expected_wTi_list = [ Pose3(walignedTw.rotation(), np.array([-np.sqrt(2), 0, 2])), Pose3(walignedTw.rotation(), np.array([0, np.sqrt(2), 2])), Pose3(walignedTw.rotation(), np.array([np.sqrt(2), 0, 2])), ] computed_wTi_list = sample_data.get_camera_poses() for wTi_computed, wTi_expected in zip(computed_wTi_list, expected_wTi_list): assert wTi_computed.equals(wTi_expected, tol=1e-9)
def test_point_cloud_cameras_locked(self) -> None: """Tests the get_ortho_axis_alignment_transform() function with a GtsfmData object containing 11 point cloud points and 12 camera frustums from the door-12 dataset. Determines if the points and frustums are properly "locked" in with one another before and after the alignment transformation is applied. """ sample_data = GtsfmData(number_images=12) # Instantiate OlssonLoader to read camera poses from door12 dataset. wTi_list = self.loader._wTi_list # Add 12 camera frustums to sample_data. default_intrinsics = Cal3Bundler(fx=100, k1=0, k2=0, u0=0, v0=0) for idx, pose in enumerate(wTi_list): camera = PinholeCameraCal3Bundler(pose, default_intrinsics) sample_data.add_camera(idx, camera) # fmt: off # These points are taken directly from the first 11 points generated by GTSFM on the door12 dataset (without # any separate alignment transformation being applied) points_3d = np.array( [[-1.4687794397729077, -1.4966178675020756, 14.583277665978546], [-1.6172612359102505, -1.0951470733744013, 14.579095414379562], [-3.2190882723771783, -4.463465966172758, 14.444076631000476], [-0.6754206497590093, -1.1132530165104157, 14.916222213341355], [-1.5514099044537981, -1.305810425894855, 14.584788688422206], [-1.551319353347404, -1.304881682597853, 14.58246449772602], [-1.9055918588057448, -1.192867982227922, 14.446379510423219], [-1.5936792439193013, -1.4398818807488012, 14.587749795933021], [-1.5937405395983737, -1.4401641027442411, 14.588167699143174], [-1.6599318889904735, -1.2273604755959784, 14.57861988411431], [2.1935589900444867, 1.6233406628428935, 12.610234497076608]]) # fmt: on # Add all point cloud points to sample_data for point_3d in points_3d: sample_data.add_track(SfmTrack(point_3d)) camera_translations = np.array( [pose.translation() for pose in sample_data.get_camera_poses()]) initial_relative_distances = scipy.spatial.distance.cdist( camera_translations, points_3d, metric="euclidean") # Apply alignment transformation to sample_data walignedTw = ellipsoid_utils.get_ortho_axis_alignment_transform( sample_data) walignedSw = Similarity3(R=walignedTw.rotation(), t=walignedTw.translation(), s=1.0) sample_data = sample_data.apply_Sim3(walignedSw) # Aggregate the final, transformed points num_tracks = sample_data.number_tracks() transformed_points_3d = [ np.array(sample_data.get_track(i).point3()) for i in range(num_tracks) ] transformed_points_3d = np.array(transformed_points_3d) transformed_camera_translations = np.array( [pose.translation() for pose in sample_data.get_camera_poses()]) final_relative_distances = scipy.spatial.distance.cdist( transformed_camera_translations, transformed_points_3d, metric="euclidean") npt.assert_almost_equal(final_relative_distances, initial_relative_distances, decimal=3)
def align_poses_sim3(aTi_list: List[Pose3], bTi_list: List[Pose3]) -> Tuple[List[Pose3], Similarity3]: """Align two pose graphs via similarity transformation. Note: poses cannot be missing/invalid. We force SIM(3) alignment rather than SE(3) alignment. We assume the two trajectories are of the exact same length. Args: aTi_list: reference poses in frame "a" which are the targets for alignment bTi_list: input poses which need to be aligned to frame "a" Returns: aTi_list_: transformed input poses previously "bTi_list" but now which have the same origin and scale as reference (now living in "a" frame) aSb: Similarity(3) object that aligns the two pose graphs. """ assert len(aTi_list) == len(bTi_list) valid_pose_tuples = [ pose_tuple for pose_tuple in list(zip(aTi_list, bTi_list)) if pose_tuple[0] is not None and pose_tuple[1] is not None ] n_to_align = len(valid_pose_tuples) if n_to_align < 2: logger.error("SIM(3) alignment uses at least 2 frames; Skipping") return bTi_list, Similarity3(Rot3(), np.zeros((3, )), 1.0) ab_pairs = Pose3Pairs(valid_pose_tuples) aSb = Similarity3.Align(ab_pairs) if np.isnan(aSb.scale()) or aSb.scale() == 0: # we have run into a case where points have no translation between them (i.e. panorama). # We will first align the rotations and then align the translation by using centroids. # TODO: handle it in GTSAM # align the rotations first, so that we can find the translation between the two panoramas aSb = Similarity3(aSb.rotation(), np.zeros((3, )), 1.0) aTi_list_rot_aligned = [ aSb.transformFrom(bTi) for _, bTi in valid_pose_tuples ] # fit a single translation motion to the centroid aTi_centroid = np.array( [aTi.translation() for aTi, _ in valid_pose_tuples]).mean(axis=0) aTi_rot_aligned_centroid = np.array( [aTi.translation() for aTi in aTi_list_rot_aligned]).mean(axis=0) # construct the final SIM3 transform aSb = Similarity3(aSb.rotation(), aTi_centroid - aTi_rot_aligned_centroid, 1.0) # TODO(johnwlambert): fix bug in GTSAM, where scale can flip to a small negative number # a negative scale destroys cheirality when applied. # See GTSAM issue here: https://github.com/borglab/gtsam/issues/995 aSb = Similarity3(R=aSb.rotation(), t=aSb.translation(), s=np.absolute(aSb.scale())) # provide a summary of the estimated alignment transform aRb = aSb.rotation().matrix() atb = aSb.translation() rz, ry, rx = Rotation.from_matrix(aRb).as_euler("zyx", degrees=True) logger.info( "Sim(3) Rotation `aRb`: rz=%.2f deg., ry=%.2f deg., rx=%.2f deg.", rz, ry, rx) logger.info(f"Sim(3) Translation `atb`: [tx,ty,tz]={str(np.round(atb,2))}") logger.info("Sim(3) Scale `asb`: %.2f", float(aSb.scale())) aTi_list_ = [] for bTi in bTi_list: if bTi is None: aTi_list_.append(None) else: aTi_list_.append(aSb.transformFrom(bTi)) logger.info("Pose graph Sim(3) alignment complete.") return aTi_list_, aSb
def align_poses_sim3(aTi_list: List[Pose3], bTi_list: List[Pose3]) -> List[Pose3]: """Align by similarity transformation. We force SIM(3) alignment rather than SE(3) alignment. We assume the two trajectories are of the exact same length. Args: aTi_list: reference poses in frame "a" which are the targets for alignment bTi_list: input poses which need to be aligned to frame "a" Returns: aTi_list_: transformed input poses previously "bTi_list" but now which have the same origin and scale as reference (now living in "a" frame) """ n_to_align = len(aTi_list) assert len(aTi_list) == len(bTi_list) assert n_to_align >= 2, "SIM(3) alignment uses at least 2 frames" ab_pairs = Pose3Pairs(list(zip(aTi_list, bTi_list))) aSb = Similarity3.Align(ab_pairs) if np.isnan(aSb.scale()) or aSb.scale() == 0: # we have run into a case where points have no translation between them (i.e. panorama). # We will first align the rotations and then align the translation by using centroids. # TODO: handle it in GTSAM # align the rotations first, so that we can find the translation between the two panoramas aSb = Similarity3(aSb.rotation(), np.zeros((3, )), 1.0) aTi_list_rot_aligned = [aSb.transformFrom(bTi) for bTi in bTi_list] # fit a single translation motion to the centroid aTi_centroid = np.array([aTi.translation() for aTi in aTi_list]).mean(axis=0) aTi_rot_aligned_centroid = np.array( [aTi.translation() for aTi in aTi_list_rot_aligned]).mean(axis=0) # construct the final SIM3 transform aSb = Similarity3(aSb.rotation(), aTi_centroid - aTi_rot_aligned_centroid, 1.0) # provide a summary of the estimated alignment transform aRb = aSb.rotation().matrix() atb = aSb.translation() rz, ry, rx = Rotation.from_matrix(aRb).as_euler("zyx", degrees=True) logger.info( f"Sim(3) Rotation `aRb`: rz={rz:.2f} deg., ry={ry:.2f} deg., rx={rx:.2f} deg.", ) logger.info(f"Sim(3) Translation `atb`: [tx,ty,tz]={str(np.round(atb,2))}") logger.info(f"Sim(3) Scale `asb`: {float(aSb.scale()):.2f}") aTi_list_ = [] for i in range(n_to_align): bTi = bTi_list[i] aTi_list_.append(aSb.transformFrom(bTi)) logger.info("Pose graph Sim(3) alignment complete.") return aTi_list_