def meter():
    print('Meter test.')
    refresh(ssd, True)  # Clear any prior image
    color = lambda v: RED if v > 0.7 else YELLOW if v > 0.5 else GREEN
    txt = lambda v: 'ovr' if v > 0.7 else 'high' if v > 0.5 else 'ok'
    m0 = Meter(wri,
               5,
               2,
               divisions=4,
               ptcolor=YELLOW,
               label='left',
               style=Meter.BAR,
               legends=('0.0', '0.5', '1.0'))
    l0 = LED(wri,
             ssd.height - 16 - wri.height,
             2,
             bdcolor=YELLOW,
             label='over')
    m1 = Meter(wri,
               5,
               50,
               divisions=4,
               ptcolor=YELLOW,
               label='right',
               style=Meter.BAR,
               legends=('0.0', '0.5', '1.0'))
    l1 = LED(wri,
             ssd.height - 16 - wri.height,
             50,
             bdcolor=YELLOW,
             label='over')
    m2 = Meter(wri,
               5,
               98,
               divisions=4,
               ptcolor=YELLOW,
               label='bass',
               style=Meter.BAR,
               legends=('0.0', '0.5', '1.0'))
    l2 = LED(wri,
             ssd.height - 16 - wri.height,
             98,
             bdcolor=YELLOW,
             label='over')
    steps = 10
    for n in range(steps):
        v = int.from_bytes(uos.urandom(3), 'little') / 16777216
        m0.value(v, color(v))
        l0.color(color(v))
        l0.text(txt(v), fgcolor=color(v))
        v = n / steps
        m1.value(v, color(v))
        l1.color(color(v))
        l1.text(txt(v), fgcolor=color(v))
        v = 1 - n / steps
        m2.value(v, color(v))
        l2.color(color(v))
        l2.text(txt(v), fgcolor=color(v))
        refresh(ssd)
        utime.sleep(1)
Beispiel #2
0
def cart():
    print('Cartesian data test.')

    def populate_1(func):
        x = -1
        while x < 1.01:
            yield x, func(x)  # x, y
            x += 0.1

    def populate_2():
        x = -1
        while x < 1.01:
            yield x, x**2  # x, y
            x += 0.1

    refresh(ssd, True)  # Clear any prior image
    g = CartesianGraph(wri,
                       2,
                       2,
                       yorigin=2,
                       fgcolor=WHITE,
                       gridcolor=LIGHTGREEN)  # Asymmetric y axis
    curve1 = Curve(g, YELLOW,
                   populate_1(lambda x: x**3 + x**2 - x, ))  # args demo
    curve2 = Curve(g, RED, populate_2())
    refresh(ssd)
def aclock():
    uv = lambda phi : cmath.rect(1, phi)  # Return a unit vector of phase phi
    pi = cmath.pi
    days = ('Monday', 'Tuesday', 'Wednesday', 'Thursday', 'Friday', 'Saturday',
            'Sunday')
    months = ('Jan', 'Feb', 'March', 'April', 'May', 'June', 'July',
              'Aug', 'Sept', 'Oct', 'Nov', 'Dec')
    # Instantiate CWriter
    CWriter.set_textpos(ssd, 0, 0)  # In case previous tests have altered it
    wri = CWriter(ssd, arial10, GREEN, BLACK, verbose=False)
    wri.set_clip(True, True, False)

    # Instantiate displayable objects
    dial = Dial(wri, 2, 2, height = 75, ticks = 12, bdcolor=None, label=120, pip=False)  # Border in fg color
    lbltim = Label(wri, 5, 85, 35)
    hrs = Pointer(dial)
    mins = Pointer(dial)
    secs = Pointer(dial)

    hstart =  0 + 0.7j  # Pointer lengths and position at top
    mstart = 0 + 0.92j
    sstart = 0 + 0.92j 
    while True:
        t = utime.localtime()
        hrs.value(hstart * uv(-t[3]*pi/6 - t[4]*pi/360), YELLOW)
        mins.value(mstart * uv(-t[4] * pi/30), YELLOW)
        secs.value(sstart * uv(-t[5] * pi/30), RED)
        lbltim.value('{:02d}.{:02d}.{:02d}'.format(t[3], t[4], t[5]))
        dial.text('{} {} {} {}'.format(days[t[6]], t[2], months[t[1] - 1], t[0]))
        refresh(ssd)
        utime.sleep(1)
Beispiel #4
0
def multi_fields(use_spi=False, soft=True):
    ssd = setup(use_spi, soft)  # Create a display instance
    Writer.set_textpos(ssd, 0, 0)  # In case previous tests have altered it
    wri = Writer(ssd, small, verbose=False)
    wri.set_clip(False, False, False)

    nfields = []
    dy = small.height() + 6
    y = 2
    col = 15
    width = wri.stringlen('99.99')
    for txt in ('X:', 'Y:', 'Z:'):
        Label(wri, y, 0, txt)
        nfields.append(Label(wri, y, col, width, bdcolor=None))  # Draw border
        y += dy

    random = xorshift64star(2**24 - 1)
    for _ in range(10):
        for field in nfields:
            value = random() / 167772
            field.value('{:5.2f}'.format(value))
        refresh(ssd)
        utime.sleep(1)
    Label(wri, 0, 64, ' DONE ', True)
    refresh(ssd)
Beispiel #5
0
def main():
    print('alevel test is running.')
    CWriter.set_textpos(ssd, 0, 0)  # In case previous tests have altered it
    wri = CWriter(ssd, arial10, GREEN, BLACK, verbose=False)
    wri.set_clip(True, True, False)
    acc = pyb.Accel()
    dial = Dial(wri,
                5,
                5,
                height=75,
                ticks=12,
                bdcolor=None,
                label='Tilt Pyboard',
                style=Dial.COMPASS,
                pip=YELLOW)  # Border in fg color
    ptr = Pointer(dial)
    scale = 1 / 40
    while True:
        x, y, z = acc.filtered_xyz()
        # Depending on relative alignment of display and Pyboard this line may
        # need changing: swap x and y or change signs so arrow points in direction
        # board is tilted.
        ptr.value(-y * scale + 1j * x * scale, YELLOW)
        refresh(ssd)
        utime.sleep_ms(200)
Beispiel #6
0
async def clip(wri):
    ss = ('clip demo', 'short', 'longer line', 'much longer line with spaces',
          'antidisestablishmentarianism', 'line with\nline break', 'Done')
    tb = Textbox(wri, *pargs, clip=True, **tbargs)
    for s in ss:
        tb.append(s,
                  ntrim=100)  # Default line=None scrolls to show most recent
        refresh(ssd)
        await asyncio.sleep(1)
def main():
    refresh(ssd, True)
    graph()
    compass()
    meter()
    labels()
    ssd.wait_until_ready()
    refresh(ssd)
    print('Waiting for display update')
    ssd.wait_until_ready()
Beispiel #8
0
def compass(x):
    print('Compass test.')
    refresh(ssd, True)  # Clear any prior image
    dial = Dial(wri, 5, 5, height = 75, bdcolor=None, label=50, style = Dial.COMPASS)
    bearing = Pointer(dial)
    bearing.value(0 + 1j, RED)
    dh = cmath.rect(1, -cmath.pi/30)  # Rotate by 6 degrees CW
    for n in range(x):
        utime.sleep_ms(200)
        bearing.value(bearing.value() * dh, RED)
        refresh(ssd)
Beispiel #9
0
def rt_polar():
    print('Simulate realtime polar data acquisition.')
    refresh(ssd, True)  # Clear any prior image
    g = PolarGraph(wri, 2, 2, fgcolor=WHITE, gridcolor=LIGHTGREEN)
    curvey = PolarCurve(g, YELLOW)
    curver = PolarCurve(g, RED)
    for x in range(100):
        curvey.point(cmath.rect(x / 100, -x * cmath.pi / 30))
        curver.point(cmath.rect((100 - x) / 100, -x * cmath.pi / 30))
        utime.sleep_ms(60)
        refresh(ssd)
Beispiel #10
0
async def meter(n, x, text, t):
    print('Meter {} test.'.format(n))
    m = Meter(wri, 5, x, divisions = 4, ptcolor=YELLOW,
              label=text, style=Meter.BAR, legends=('0.0', '0.5', '1.0'))
    l = LED(wri, ssd.height - 16 - wri.height, x, bdcolor=YELLOW, label ='over')
    while True:
        v = int.from_bytes(uos.urandom(3),'little')/16777216
        m.value(v, color(v))
        l.color(color(v))
        l.text(txt(v), fgcolor=color(v))
        refresh(ssd)
        await asyncio.sleep_ms(t)
def show():
    # Low power version of .wait_until_ready()
    def wait_ready():
        while not ssd.ready():
            upower.lpdelay(1000)

    refresh(ssd, True)  # Init and clear. busy will go True for ~5s
    populate()
    wait_ready()  # wait for display ready (seconds)
    refresh(ssd)
    wait_ready()
    ssd.sleep()  # Put into "off" state
Beispiel #12
0
def liss():
    print('Lissajous figure.')

    def populate():
        t = -math.pi
        while t <= math.pi:
            yield math.sin(t), math.cos(3 * t)  # x, y
            t += 0.1

    refresh(ssd, True)  # Clear any prior image
    g = CartesianGraph(wri, 2, 2, fgcolor=WHITE, gridcolor=LIGHTGREEN)
    curve = Curve(g, YELLOW, populate())
    refresh(ssd)
Beispiel #13
0
async def default(scale, lbl):
    cv = -1.0  # Current
    val = 1.0
    while True:
        v1, v2 = val, cv
        steps = 400
        delta = (val - cv) / steps
        for _ in range(steps):
            cv += delta
            scale.value(cv)
            lbl.value('{:4.3f}'.format(cv))
            refresh(ssd)
            await asyncio.sleep_ms(250)
        val, cv = v2, v1
Beispiel #14
0
async def wrap(wri):
    s = '''The textbox displays multiple lines of text in a field of fixed dimensions. \
Text may be clipped to the width of the control or may be word-wrapped. If the number \
of lines of text exceeds the height available, scrolling may be performed \
by calling a method.
'''
    tb = Textbox(wri, *pargs, clip=False, **tbargs)
    tb.append(s, ntrim=100, line=0)
    refresh(ssd)
    while True:
        await asyncio.sleep(1)
        if not tb.scroll(1):
            break
        refresh(ssd)
Beispiel #15
0
def polar_clip():
    print('Test of polar data clipping.')

    def populate(rot):
        f = lambda theta: cmath.rect(1.15 * math.sin(5 * theta), theta
                                     ) * rot  # complex
        nmax = 150
        for n in range(nmax + 1):
            yield f(2 * cmath.pi * n / nmax)  # complex z

    refresh(ssd, True)  # Clear any prior image
    g = PolarGraph(wri, 2, 2, fgcolor=WHITE, gridcolor=LIGHTGREEN)
    curve = PolarCurve(g, YELLOW, populate(1))
    curve1 = PolarCurve(g, RED, populate(cmath.rect(1, cmath.pi / 5), ))
    refresh(ssd)
Beispiel #16
0
def meter():
    ssd.fill(0)
    refresh(ssd)
    wri = Writer(ssd, arial10, verbose=False)
    m0 = Meter(wri, 5, 2, height = 50, divisions = 4, legends=('0.0', '0.5', '1.0'))
    m1 = Meter(wri, 5, 44, height = 50, divisions = 4, legends=('-1', '0', '+1'))
    m2 = Meter(wri, 5, 86, height = 50, divisions = 4, legends=('-1', '0', '+1'))
    steps = 10
    random = xorshift64star(2**24 - 1)
    for n in range(steps + 1):
        m0.value(random() / 16777216)
        m1.value(n/steps)
        m2.value(1 - n/steps)
        refresh(ssd)
        utime.sleep(1)
Beispiel #17
0
def polar():
    print('Polar data test.')

    def populate():
        def f(theta):
            return cmath.rect(math.sin(3 * theta), theta)  # complex

        nmax = 150
        for n in range(nmax + 1):
            yield f(2 * cmath.pi * n / nmax)  # complex z

    refresh(ssd, True)  # Clear any prior image
    g = PolarGraph(wri, 2, 2, fgcolor=WHITE, gridcolor=LIGHTGREEN)
    curve = PolarCurve(g, YELLOW, populate())
    refresh(ssd)
async def main():
    refresh(ssd, True)  # Clear display
    await ssd.wait()
    print('Ready')
    evt = asyncio.Event()
    asyncio.create_task(meter(evt))
    asyncio.create_task(multi_fields(evt))
    asyncio.create_task(compass(evt))
    while True:
        # Normal procedure before refresh, but 10s sleep should mean it always returns immediately
        await ssd.wait()
        refresh(ssd)  # Launches ._as_show()
        await ssd.updated()
        # Content has now been shifted out so coros can update
        # framebuffer in background
        evt.set()
        evt.clear()
        await asyncio.sleep(10)  # Allow for slow refresh
Beispiel #19
0
def clock(x):
    print('Clock test.')
    refresh(ssd, True)  # Clear any prior image
    lbl = Label(wri, 5, 85, 'Clock')
    dial = Dial(wri, 5, 5, height = 75, ticks = 12, bdcolor=None, label=50)  # Border in fg color
    hrs = Pointer(dial)
    mins = Pointer(dial)
    hrs.value(0 + 0.7j, RED)
    mins.value(0 + 0.9j, YELLOW)
    dm = cmath.rect(1, -cmath.pi/30)  # Rotate by 1 minute (CW)
    dh = cmath.rect(1, -cmath.pi/1800)  # Rotate hours by 1 minute
    for n in range(x):
        refresh(ssd)
        utime.sleep_ms(200)
        mins.value(mins.value() * dm, YELLOW)
        hrs.value(hrs.value() * dh, RED)
        dial.text('ticks: {}'.format(n))
    lbl.value('Done')
Beispiel #20
0
async def aclock():
    do_connect.do_connect()
    asyncio.create_task(set_rtc())
    asyncio.create_task(ramcheck())
    uv = lambda phi: cmath.rect(1, phi)  # Return a unit vector of phase phi
    pi = cmath.pi
    days = ('Monday', 'Tuesday', 'Wednesday', 'Thursday', 'Friday', 'Saturday',
            'Sunday')
    months = ('January', 'February', 'March', 'April', 'May', 'June', 'July',
              'August', 'September', 'October', 'November', 'December')
    # Instantiate CWriter
    CWriter.set_textpos(ssd, 0, 0)  # In case previous tests have altered it
    wri = CWriter(ssd, font, GREEN, BLACK, verbose=False)
    wri.set_clip(True, True, False)

    # Instantiate displayable objects
    dial = Dial(wri, 2, 2, height=130, ticks=12,
                bdcolor=None)  # Border in fg color
    lbltim = Label(wri, 140, 2, 130)
    lblday = Label(wri, 170, 2, 130)
    lblmonth = Label(wri, 190, 2, 130)
    lblyr = Label(wri, 210, 2, 130)
    hrs = Pointer(dial)
    mins = Pointer(dial)
    secs = Pointer(dial)

    hstart = 0 + 0.7j  # Pointer lengths and position at top
    mstart = 0 + 0.92j
    sstart = 0 + 0.92j
    t = time.localtime()
    while True:
        hrs.value(hstart * uv(-t[3] * pi / 6 - t[4] * pi / 360), YELLOW)
        mins.value(mstart * uv(-t[4] * pi / 30 - t[5] * pi / 1800), YELLOW)
        secs.value(sstart * uv(-t[5] * pi / 30), RED)
        lbltim.value('{:02d}.{:02d}.{:02d} {}'.format(t[3], t[4], t[5],
                                                      'BST' if bst else 'UTC'))
        lblday.value('{}'.format(days[t[6]]))
        lblmonth.value('{} {}'.format(t[2], months[t[1] - 1]))
        lblyr.value('{}'.format(t[0]))
        refresh(ssd)
        st = t
        while st == t:
            await asyncio.sleep_ms(100)
            t = time.localtime()
Beispiel #21
0
def seq():
    print('Time sequence test - sine and cosine.')
    refresh(ssd, True)  # Clear any prior image
    # y axis at t==now, no border
    g = CartesianGraph(wri,
                       2,
                       2,
                       xorigin=10,
                       fgcolor=WHITE,
                       gridcolor=LIGHTGREEN,
                       bdcolor=False)
    tsy = TSequence(g, YELLOW, 50)
    tsr = TSequence(g, RED, 50)
    for t in range(100):
        g.clear()
        tsy.add(0.9 * math.sin(t / 10))
        tsr.add(0.4 * math.cos(t / 10))
        refresh(ssd)
        utime.sleep_ms(100)
Beispiel #22
0
def fields(use_spi=False, soft=True):
    ssd = setup(use_spi, soft)  # Create a display instance
    Writer.set_textpos(ssd, 0, 0)  # In case previous tests have altered it
    wri = Writer(ssd, fixed, verbose=False)
    wri.set_clip(False, False, False)
    textfield = Label(wri, 0, 2, wri.stringlen('longer'))
    numfield = Label(wri, 25, 2, wri.stringlen('99.99'), bdcolor=None)
    countfield = Label(wri, 0, 90, wri.stringlen('1'))
    n = 1
    random = xorshift64star(65535)
    for s in ('short', 'longer', '1', ''):
        textfield.value(s)
        numfield.value('{:5.2f}'.format(random() / 1000))
        countfield.value('{:1d}'.format(n))
        n += 1
        refresh(ssd)
        utime.sleep(2)
    textfield.value('Done', True)
    refresh(ssd)
def test():
    def tickcb(f, c):
        if f > 0.8:
            return RED
        if f < -0.8:
            return BLUE
        return c

    def legendcb(f):
        return '{:2.0f}'.format(88 + ((f + 1) / 2) * (108 - 88))

    refresh(ssd, True)  # Initialise and clear display.
    CWriter.set_textpos(ssd, 0, 0)  # In case previous tests have altered it
    wri = CWriter(ssd, arial10, GREEN, BLACK, verbose=False)
    wri.set_clip(True, True, False)
    scale1 = Scale(wri,
                   2,
                   2,
                   width=124,
                   legendcb=legendcb,
                   pointercolor=RED,
                   fontcolor=YELLOW)
    asyncio.create_task(radio(scale1))

    lbl = Label(wri,
                ssd.height - wri.height - 2,
                2,
                50,
                bgcolor=DARKGREEN,
                bdcolor=RED,
                fgcolor=WHITE)
    # do_refresh is called with arg 4. In landscape mode this splits screen
    # into segments of 240/4=60 lines. Here we ensure a scale straddles
    # this boundary
    scale = Scale(wri,
                  55,
                  2,
                  width=124,
                  tickcb=tickcb,
                  pointercolor=RED,
                  fontcolor=YELLOW,
                  bdcolor=CYAN)
    asyncio.run(default(scale, lbl))
async def default(scale, lbl):
    cv = -1.0  # Current
    val = 1.0
    while True:
        v1, v2 = val, cv
        steps = 400
        delta = (val - cv) / steps
        for _ in range(steps):
            cv += delta
            scale.value(cv)
            lbl.value('{:4.3f}'.format(cv))
            if hasattr(ssd, 'do_refresh'):
                # Option to reduce uasyncio latency
                await ssd.do_refresh()
            else:
                # Normal synchronous call
                refresh(ssd)
            await asyncio.sleep_ms(250)
        val, cv = v2, v1
def aclock():
    rtc = pyb.RTC()
    uv = lambda phi: cmath.rect(1, phi)  # Return a unit vector of phase phi
    pi = cmath.pi
    days = ('Mon', 'Tue', 'Wed', 'Thur', 'Fri', 'Sat', 'Sun')
    months = ('Jan', 'Feb', 'March', 'April', 'May', 'June', 'July', 'Aug',
              'Sept', 'Oct', 'Nov', 'Dec')
    # Instantiate Writer
    Writer.set_textpos(ssd, 0, 0)  # In case previous tests have altered it
    wri = Writer(ssd, font_small, verbose=False)
    wri.set_clip(True, True, False)
    wri_tim = Writer(ssd, font_large, verbose=False)
    wri_tim.set_clip(True, True, False)

    # Instantiate displayable objects
    dial = Dial(wri, 2, 2, height=215, ticks=12, bdcolor=None, pip=True)
    lbltim = Label(wri_tim, 50, 230, '00.00.00')
    lbldat = Label(wri, 100, 230, 100)
    hrs = Pointer(dial)
    mins = Pointer(dial)

    hstart = 0 + 0.7j  # Pointer lengths and position at top
    mstart = 0 + 0.92j
    while True:
        t = rtc.datetime(
        )  # (year, month, day, weekday, hours, minutes, seconds, subseconds)
        hang = -t[4] * pi / 6 - t[5] * pi / 360  # Angles of hands in radians
        mang = -t[5] * pi / 30
        if abs(hang -
               mang) < pi / 360:  # Avoid visually confusing overlap of hands
            hang += pi / 30  # by making hr hand lag slightly
        hrs.value(hstart * uv(hang))
        mins.value(mstart * uv(mang))
        lbltim.value('{:02d}.{:02d}'.format(t[4], t[5]))
        lbldat.value('{} {} {} {}'.format(days[t[3] - 1], t[2],
                                          months[t[1] - 1], t[0]))
        refresh(ssd)
        # Power saving: only refresh every 30s
        for _ in range(30):
            upower.lpdelay(1000)
            ssd.update()  # Toggle VCOM
Beispiel #26
0
def lem():
    print('Lemniscate of Bernoulli.')

    def populate():
        t = -math.pi
        while t <= math.pi + 0.1:
            x = 0.5 * math.sqrt(2) * math.cos(t) / (math.sin(t)**2 + 1)
            y = math.sqrt(2) * math.cos(t) * math.sin(t) / (math.sin(t)**2 + 1)
            yield x, y
            t += 0.1

    refresh(ssd, True)  # Clear any prior image
    Label(wri, 82, 2, 'To infinity and beyond...')
    g = CartesianGraph(wri,
                       2,
                       2,
                       height=75,
                       fgcolor=WHITE,
                       gridcolor=LIGHTGREEN)
    curve = Curve(g, YELLOW, populate())
    refresh(ssd)
Beispiel #27
0
def multi_fields(t):
    print('multi_fields')
    refresh(ssd, True)  # Clear any prior image
    nfields = []
    dy = wri.height + 6
    y = 2
    col = 15
    width = wri.stringlen('99.99')
    for txt in ('X:', 'Y:', 'Z:'):
        Label(wri, y, 0, txt)  # Use wri default colors
        nfields.append(Label(wri, y, col, width,
                             bdcolor=None))  # Specify a border, color TBD
        y += dy

    end = utime.ticks_add(utime.ticks_ms(), t * 1000)
    while utime.ticks_diff(end, utime.ticks_ms()) > 0:
        for field in nfields:
            value = int.from_bytes(uos.urandom(3), 'little') / 167772
            overrange = None if value < 70 else YELLOW if value < 90 else RED
            field.value('{:5.2f}'.format(value),
                        fgcolor=overrange,
                        bdcolor=overrange)
        refresh(ssd)
        utime.sleep(1)
    Label(wri, 0, 64, ' OK ', True, fgcolor=RED)
    refresh(ssd)
    utime.sleep(1)
Beispiel #28
0
def test():
    def tickcb(f, c):
        if f > 0.8:
            return RED
        if f < -0.8:
            return BLUE
        return c

    def legendcb(f):
        return '{:2.0f}'.format(88 + ((f + 1) / 2) * (108 - 88))

    refresh(ssd)  # Initialise and clear display.
    CWriter.set_textpos(ssd, 0, 0)  # In case previous tests have altered it
    wri = CWriter(ssd, arial10, GREEN, BLACK, verbose=False)
    wri.set_clip(True, True, False)
    scale1 = Scale(wri,
                   2,
                   2,
                   width=124,
                   legendcb=legendcb,
                   pointercolor=RED,
                   fontcolor=YELLOW)
    asyncio.create_task(radio(scale1))

    lbl = Label(wri,
                ssd.height - wri.height - 2,
                2,
                50,
                bgcolor=DARKGREEN,
                bdcolor=RED,
                fgcolor=WHITE)
    scale = Scale(wri,
                  45,
                  2,
                  width=124,
                  tickcb=tickcb,
                  pointercolor=RED,
                  fontcolor=YELLOW,
                  bdcolor=CYAN)
    asyncio.run(default(scale, lbl))
Beispiel #29
0
def aclock():
    uv = lambda phi : cmath.rect(1, phi)  # Return a unit vector of phase phi
    pi = cmath.pi
    days = ('Mon', 'Tue', 'Wed', 'Thur', 'Fri', 'Sat', 'Sun')
    months = ('Jan', 'Feb', 'March', 'April', 'May', 'June', 'July',
              'Aug', 'Sept', 'Oct', 'Nov', 'Dec')
    # Instantiate Writer
    Writer.set_textpos(ssd, 0, 0)  # In case previous tests have altered it
    wri = Writer(ssd, font_small, verbose=False)
    wri.set_clip(True, True, False)
    wri_tim = Writer(ssd, font_large, verbose=False)
    wri_tim.set_clip(True, True, False)

    # Instantiate displayable objects
    dial = Dial(wri, 2, 2, height = 215, ticks = 12, bdcolor=None, pip=True)
    lbltim = Label(wri_tim, 50, 230, '00.00.00')
    lbldat = Label(wri, 100, 230, 100)
    hrs = Pointer(dial)
    mins = Pointer(dial)
    secs = Pointer(dial)

    hstart =  0 + 0.7j  # Pointer lengths and position at top
    mstart = 0 + 0.92j
    sstart = 0 + 0.92j 
    while True:
        t = utime.localtime()
        hang = -t[3]*pi/6 - t[4]*pi/360  # Angles of hour and minute hands
        mang = -t[4] * pi/30
        sang = -t[5] * pi/30
        if abs(hang - mang) < pi/360:  # Avoid overlap of hr and min hands
            hang += pi/30  # which is visually confusing. Add slight lag to hrs
        hrs.value(hstart * uv(hang))
        mins.value(mstart * uv(mang))
        secs.value(sstart * uv(sang))
        lbltim.value('{:02d}.{:02d}.{:02d}'.format(t[3], t[4], t[5]))
        lbldat.value('{} {} {} {}'.format(days[t[6]], t[2], months[t[1] - 1], t[0]))
        refresh(ssd)
        utime.sleep(1)
Beispiel #30
0
async def main():
    print('Press Pyboard usr button to stop test.')
    # Asynchronously flash Pyboard LED's. Because we can.
    leds = [
        asyncio.create_task(flash(1, 200)),
        asyncio.create_task(flash(2, 233))
    ]
    # Task for each meter and GUI LED
    mtasks = [
        MyMeter(2, 'left').task,
        MyMeter(50, 'right').task,
        MyMeter(98, 'bass').task
    ]
    k = Killer()
    while True:
        if await k.wait(800):  # Switch was pressed
            break
        refresh(ssd)
    for task in mtasks + leds:
        task.cancel()
    await asyncio.sleep_ms(0)
    ssd.fill(0)  # Clear display at end.
    refresh(ssd)