def getRunner(self):
        """ Factory to create a new runner thread.
        Requires three parameters to be set before execution
        can take place:

        * Hazard layer - a path to a raster (string)
        * Exposure layer - a path to a vector hazard layer (string).
        * Function - a function name that defines how the Hazard assessment
          will be computed (string).

        Args:
           None.
        Returns:
           None
        Raises:
           InsufficientParametersException if not all parameters are
           set.
        """
        self._filename = None
        self._result = None
        if self._hazardLayer is None or self._hazardLayer == '':
            myMessage = self.tr('Error: Hazard layer not set.')
            raise InsufficientParametersException(myMessage)

        if self._exposureLayer is None or self._exposureLayer == '':
            myMessage = self.tr('Error: Exposure layer not set.')
            raise InsufficientParametersException(myMessage)

        if self._function is None or self._function == '':
            myMessage = self.tr('Error: Function not set.')
            raise InsufficientParametersException(myMessage)

        # Call impact calculation engine
        try:
            myHazardLayer = readSafeLayer(self._hazardLayer)
            myExposureLayer = readSafeLayer(self._exposureLayer)
        except:
            raise

        myFunctions = getSafeImpactFunctions(self._function)
        myFunction = myFunctions[0][self._function]
        return ISImpactCalculatorThread(myHazardLayer,
                                        myExposureLayer,
                                        myFunction)
Beispiel #2
0
    def testRasterScaling_projected(self):
        """Attempt to scale projected density raster layers raise exception

        Automatic scaling when resampling density data
        does not currently work for projected layers. See issue #123.

        For the time being this test checks that an exception is raised
        when scaling is attempted on projected layers.
        When we resolve issue #123, this test should be rewritten.
        """

        myTestFilename = 'Population_Jakarta_UTM48N.tif'
        myRasterPath = ('%s/%s' % (TESTDATA, myTestFilename))

        # Get reference values
        mySafeLayer = readSafeLayer(myRasterPath)
        myMinimum, myMaximum = mySafeLayer.get_extrema()
        myNativeResolution = mySafeLayer.get_resolution()

        print
        print myMinimum, myMaximum
        print myNativeResolution

        # Define bounding box in EPSG:4326
        myBoundingBox = [106.61, -6.38, 107.05, -6.07]

        # Test for a range of resolutions
        for myResolution in [0.02, 0.01, 0.005, 0.002, 0.001]:

            # Clip the raster to the bbox
            myExtraKeywords = {'resolution': myNativeResolution}
            myRasterLayer = QgsRasterLayer(myRasterPath, 'xxx')
            try:
                myResult = clipLayer(myRasterLayer,
                                     myBoundingBox,
                                     myResolution,
                                     theExtraKeywords=myExtraKeywords)
                del myResult
            except InvalidProjectionException:
                pass
            else:
                myMessage = 'Should have raised InvalidProjectionException'
                raise Exception(myMessage)
    def test_getOptimalExtent(self):
        """Optimal extent is calculated correctly
        """

        exposure_path = os.path.join(TESTDATA, 'Population_2010.asc')
        hazard_path = os.path.join(HAZDATA,
                                   'Lembang_Earthquake_Scenario.asc')

        # Expected data
        haz_metadata = {'bounding_box': (105.3000035,
                                         -8.3749994999999995,
                                         110.2914705,
                                         -5.5667784999999999),
                        'resolution': (0.0083330000000000001,
                                       0.0083330000000000001)}

        exp_metadata = {'bounding_box': (94.972335000000001,
                                         -11.009721000000001,
                                         141.0140016666665,
                                         6.0736123333332639),
                        'resolution': (0.0083333333333333003,
                                       0.0083333333333333003)}

        # Verify relevant metada is ok
        H = readSafeLayer(hazard_path)
        E = readSafeLayer(exposure_path)

        hazard_bbox = H.get_bounding_box()
        assert numpy.allclose(hazard_bbox, haz_metadata['bounding_box'],
                              rtol=1.0e-12, atol=1.0e-12)

        exposure_bbox = E.get_bounding_box()
        assert numpy.allclose(exposure_bbox, exp_metadata['bounding_box'],
                              rtol=1.0e-12, atol=1.0e-12)

        hazard_res = H.get_resolution()
        assert numpy.allclose(hazard_res, haz_metadata['resolution'],
                              rtol=1.0e-12, atol=1.0e-12)

        exposure_res = E.get_resolution()
        assert numpy.allclose(exposure_res, exp_metadata['resolution'],
                              rtol=1.0e-12, atol=1.0e-12)

        # First, do some examples that produce valid results
        ref_res = [105.3000035, -8.3749995, 110.2914705, -5.5667785]
        view_port = [94.972335, -11.009721, 141.014002, 6.073612]

        bbox = getOptimalExtent(hazard_bbox, exposure_bbox, view_port)
        assert numpy.allclose(bbox, ref_res, rtol=1.0e-12, atol=1.0e-12)

        bbox = getOptimalExtent(hazard_bbox, exposure_bbox, view_port)
        assert numpy.allclose(bbox, ref_res, rtol=1.0e-12, atol=1.0e-12)

        view_port = [105.3000035,
                     -8.3749994999999995,
                     110.2914705,
                     -5.5667784999999999]
        bbox = getOptimalExtent(hazard_bbox, exposure_bbox, view_port)
        assert numpy.allclose(bbox, ref_res,
                              rtol=1.0e-12, atol=1.0e-12)

        # Then one where boxes don't overlap
        view_port = [105.3, -4.3, 110.29, -2.5]
        try:
            getOptimalExtent(hazard_bbox, exposure_bbox, view_port)
        except InsufficientOverlapException, e:
            myMessage = 'Did not find expected error message in %s' % str(e)
            assert 'did not overlap' in str(e), myMessage
Beispiel #4
0
    def testRasterScaling(self):
        """Raster layers can be scaled when resampled

        This is a test for ticket #52

        Native test .asc data has

        Population_Jakarta_geographic.asc
        ncols         638
        nrows         649
        cellsize      0.00045228819716044

        Population_2010.asc
        ncols         5525
        nrows         2050
        cellsize      0.0083333333333333

        Scaling is necessary for raster data that represents density
        such as population per km^2
        """

        for myFilename in ['Population_Jakarta_geographic.asc',
                           'Population_2010.asc']:

            myRasterPath = ('%s/%s' % (TESTDATA, myFilename))

            # Get reference values
            mySafeLayer = readSafeLayer(myRasterPath)
            myMinimum, myMaximum = mySafeLayer.get_extrema()
            del myMaximum
            del myMinimum
            myNativeResolution = mySafeLayer.get_resolution()

            # Get the Hazard extents as an array in EPSG:4326
            myBoundingBox = mySafeLayer.get_bounding_box()

            # Test for a range of resolutions
            for myResolution in [0.02,
                                 0.01,
                                 0.005,
                                 0.002,
                                 0.001,
                                 0.0005,   # Coarser
                                 0.0002]:  # Finer

                # To save time only do two resolutions for the
                # large population set
                if myFilename.startswith('Population_2010'):
                    if myResolution > 0.01 or myResolution < 0.005:
                        break

                # Clip the raster to the bbox
                myExtraKeywords = {'resolution': myNativeResolution}
                myRasterLayer = QgsRasterLayer(myRasterPath, 'xxx')
                myResult = clipLayer(myRasterLayer,
                                     myBoundingBox,
                                     myResolution,
                                     theExtraKeywords=myExtraKeywords)

                mySafeLayer = readSafeLayer(myResult)
                myNativeData = mySafeLayer.get_data(scaling=False)
                myScaledData = mySafeLayer.get_data(scaling=True)

                mySigma = (mySafeLayer.get_resolution()[0] /
                           myNativeResolution[0]) ** 2

                # Compare extrema
                myExpectedScaledMax = mySigma * numpy.nanmax(myNativeData)
                myMessage = ('Resampled raster was not rescaled correctly: '
                       'max(myScaledData) was %f but expected %f'
                       % (numpy.nanmax(myScaledData), myExpectedScaledMax))

                # FIXME (Ole): The rtol used to be 1.0e-8 -
                #              now it has to be 1.0e-6, otherwise we get
                #              max(myScaledData) was 12083021.000000 but
                #              expected 12083020.414316
                #              Is something being rounded to the nearest
                #              integer?
                assert numpy.allclose(myExpectedScaledMax,
                                      numpy.nanmax(myScaledData),
                                      rtol=1.0e-6, atol=1.0e-8), myMessage

                myExpectedScaledMin = mySigma * numpy.nanmin(myNativeData)
                myMessage = ('Resampled raster was not rescaled correctly: '
                       'min(myScaledData) was %f but expected %f'
                       % (numpy.nanmin(myScaledData), myExpectedScaledMin))
                assert numpy.allclose(myExpectedScaledMin,
                                      numpy.nanmin(myScaledData),
                                      rtol=1.0e-8, atol=1.0e-12), myMessage

                # Compare elementwise
                myMessage = 'Resampled raster was not rescaled correctly'
                assert nanallclose(myNativeData * mySigma, myScaledData,
                                   rtol=1.0e-8, atol=1.0e-8), myMessage

                # Check that it also works with manual scaling
                myManualData = mySafeLayer.get_data(scaling=mySigma)
                myMessage = 'Resampled raster was not rescaled correctly'
                assert nanallclose(myManualData, myScaledData,
                                   rtol=1.0e-8, atol=1.0e-8), myMessage

                # Check that an exception is raised for bad arguments
                try:
                    mySafeLayer.get_data(scaling='bad')
                except:
                    pass
                else:
                    myMessage = 'String argument should have raised exception'
                    raise Exception(myMessage)

                try:
                    mySafeLayer.get_data(scaling='(1, 3)')
                except:
                    pass
                else:
                    myMessage = 'Tuple argument should have raised exception'
                    raise Exception(myMessage)

                # Check None option without keyword datatype == 'density'
                mySafeLayer.keywords['datatype'] = 'undefined'
                myUnscaledData = mySafeLayer.get_data(scaling=None)
                myMessage = 'Data should not have changed'
                assert nanallclose(myNativeData, myUnscaledData,
                                   rtol=1.0e-12, atol=1.0e-12), myMessage

                # Try with None and density keyword
                mySafeLayer.keywords['datatype'] = 'density'
                myUnscaledData = mySafeLayer.get_data(scaling=None)
                myMessage = 'Resampled raster was not rescaled correctly'
                assert nanallclose(myScaledData, myUnscaledData,
                                   rtol=1.0e-12, atol=1.0e-12), myMessage

                mySafeLayer.keywords['datatype'] = 'counts'
                myUnscaledData = mySafeLayer.get_data(scaling=None)
                myMessage = 'Data should not have changed'
                assert nanallclose(myNativeData, myUnscaledData,
                                   rtol=1.0e-12, atol=1.0e-12), myMessage
Beispiel #5
0
    def test_clipBoth(self):
        """Raster and Vector layers can be clipped
        """

        # Create a vector layer
        myName = 'padang'
        myVectorLayer = QgsVectorLayer(VECTOR_PATH, myName, 'ogr')
        myMessage = 'Did not find layer "%s" in path "%s"' % (myName,
                                                        VECTOR_PATH)
        assert myVectorLayer.isValid(), myMessage

        # Create a raster layer
        myName = 'shake'
        myRasterLayer = QgsRasterLayer(RASTERPATH, myName)
        myMessage = 'Did not find layer "%s" in path "%s"' % (myName,
                                                        RASTERPATH)
        assert myRasterLayer.isValid(), myMessage

        # Create a bounding box
        myViewportGeoExtent = [99.53, -1.22, 101.20, -0.36]

        # Get the Hazard extents as an array in EPSG:4326
        myHazardGeoExtent = [myRasterLayer.extent().xMinimum(),
                             myRasterLayer.extent().yMinimum(),
                             myRasterLayer.extent().xMaximum(),
                             myRasterLayer.extent().yMaximum()]

        # Get the Exposure extents as an array in EPSG:4326
        myExposureGeoExtent = [myVectorLayer.extent().xMinimum(),
                               myVectorLayer.extent().yMinimum(),
                               myVectorLayer.extent().xMaximum(),
                               myVectorLayer.extent().yMaximum()]

        # Now work out the optimal extent between the two layers and
        # the current view extent. The optimal extent is the intersection
        # between the two layers and the viewport.
        # Extent is returned as an array [xmin,ymin,xmax,ymax]
        myGeoExtent = getOptimalExtent(myHazardGeoExtent,
                                       myExposureGeoExtent,
                                       myViewportGeoExtent)

        # Clip the vector to the bbox
        myResult = clipLayer(myVectorLayer, myGeoExtent)

        # Check the output is valid
        assert os.path.exists(myResult)
        readSafeLayer(myResult)

        # Clip the raster to the bbox
        myResult = clipLayer(myRasterLayer, myGeoExtent)

        # Check the output is valid
        assert os.path.exists(myResult)
        readSafeLayer(myResult)

        # -------------------------------
        # Check the extra keywords option
        # -------------------------------
        # Clip the vector to the bbox
        myResult = clipLayer(myVectorLayer, myGeoExtent,
                             theExtraKeywords={'kermit': 'piggy'})

        # Check the output is valid
        assert os.path.exists(myResult)
        L = readSafeLayer(myResult)
        kwds = L.get_keywords()
        myMessage = 'Extra keyword was not found in %s: %s' % (myResult, kwds)
        assert kwds['kermit'] == 'piggy'

        # Clip the raster to the bbox
        myResult = clipLayer(myRasterLayer, myGeoExtent,
                             theExtraKeywords={'zoot': 'animal'})

        # Check the output is valid
        assert os.path.exists(myResult)
        L = readSafeLayer(myResult)
        kwds = L.get_keywords()

        myMessage = 'Extra keyword was not found in %s: %s' % (myResult, kwds)
        assert kwds['zoot'] == 'animal', myMessage