Beispiel #1
0
 def test_marginalization(self):
     " MultiFitter.lsqfit(..., mopt=...) "
     fitter = MultiFitter(models=self.make_models(ncg=1))
     fit4 = fitter.lsqfit(data=self.data, prior=self.prior, mopt=True)
     self.assertEqual(str(fit4.p['a']), str(self.ref_fit.p['a']))
     self.assertEqual(gv.fmt_chi2(fit4), gv.fmt_chi2(self.ref_fit))
     self.assertTrue('b' not in fit4.p)
Beispiel #2
0
 def test_extend(self):
     " MultiFitter.lsqfit(..., extend=True) "
     fitter = MultiFitter(models=self.make_models(ncg=1))
     prior = gv.BufferDict([('log(a)', gv.log(self.prior['a'])),
                            ('b', self.prior['b'])])
     fit5 = fitter.lsqfit(data=self.data, prior=prior, extend=True)
     self.assertEqual(str(fit5.p['a']), str(self.ref_fit.p['a']))
     self.assertEqual(gv.fmt_chi2(fit5), gv.fmt_chi2(self.ref_fit))
     self.assertTrue('log(a)' in fit5.p)
Beispiel #3
0
def main():
    data, basis = make_data('etab.h5')
    fitter = cf.CorrFitter(models=make_models())
    p0 = None
    for N in range(1, 8):
        print(30 * '=', 'nterm =', N)
        prior = make_prior(N, basis)
        fit = fitter.lsqfit(data=data, prior=prior, p0=p0, svdcut=SVDCUT)
        print(fit.format(pstyle=None if N < 7 else 'v'))
        p0 = fit.pmean
    print_results(fit, basis, prior, data)
    if SHOWPLOTS:
        fit.show_plots(save='etab.{}.png', view='ratio')

    # check fit quality by adding noise
    print('\n==================== add svd, prior noise')
    noisy_fit = fitter.lsqfit(
        data=data,
        prior=prior,
        p0=fit.pmean,
        svdcut=SVDCUT,
        noise=True,
    )
    print(noisy_fit.format(pstyle=None))
    dE = fit.p['etab.dE'][:3]
    noisy_dE = noisy_fit.p['etab.dE'][:3]
    print('      dE:', dE)
    print('noisy dE:', noisy_dE)
    print('          ', gv.fmt_chi2(gv.chi2(dE - noisy_dE)))
    if SHOWPLOTS:
        fit.qqplot_residuals().show()
Beispiel #4
0
def main():
    data, basis = make_data('etab.h5')
    fitter = cf.CorrFitter(models=make_models())
    p0 = None
    for N in range(1, 8):
        print(30 * '=', 'nterm =', N)
        prior = make_prior(N, basis)
        fit = fitter.lsqfit(data=data, prior=prior, p0=p0, svdcut=SVDCUT)
        print(fit.format(pstyle=None if N < 7 else 'm'))
        p0 = fit.pmean
    print_results(fit, basis, prior, data)
    if DISPLAYPLOTS:
        fitter.display_plots()
    print('\n==================== add svd, prior noise')
    noisy_fit = fitter.lsqfit(
        data=data,
        prior=prior,
        p0=fit.pmean,
        svdcut=SVDCUT,
        noise=True,
    )
    print(noisy_fit.format(pstyle=None))
    dE = fit.p['etab.dE'][:3]
    noisy_dE = noisy_fit.p['etab.dE'][:3]
    print('      dE:', dE)
    print('noisy dE:', noisy_dE)
    print('          ', gv.fmt_chi2(gv.chi2(dE - noisy_dE)))
Beispiel #5
0
def main():
    data = make_data('etas-Ds.h5')
    models = make_models()                                              # 1a
    models = [
      models[0], models[1],                                             # 1b
      dict(nterm=(2, 1), svdcut=6.3e-5),                                # 1c
      (models[2], models[3])                                            # 1d
      ]
    fitter = cf.CorrFitter(models=models)                               # 1e
    p0 = None
    for N in [1, 2, 3, 4]:
        print(30 * '=', 'nterm =', N)
        prior = make_prior(N)
        fit = fitter.chained_lsqfit(data=data, prior=prior, p0=p0)      # 2
        print(fit.format(pstyle=None if N < 4 else 'm'))
        p0 = fit.pmean
    print_results(fit, prior, data)
    if DISPLAYPLOTS:
        fit.show_plots()

    # check fit quality by adding noise
    print('\n==================== add svd, prior noise')
    noisy_fit = fitter.chained_lsqfit(
        data=data, prior=prior, p0=fit.pmean, svdcut=SVDCUT,
        noise=True,
        )
    print(noisy_fit.format(pstyle=None))
    p = key_parameters(fit.p)
    noisy_p = key_parameters(noisy_fit.p)
    print('      fit:', p)
    print('noisy fit:', noisy_p)
    print('          ', gv.fmt_chi2(gv.chi2(p - noisy_p)))

    # simulated fit
    for sim_pdata in fitter.simulated_pdata_iter(
        n=2, dataset=cf.read_dataset('etas-Ds.h5'), p_exact=fit.pmean
        ):
        print('\n==================== simulation')
        sim_fit = fitter.chained_lsqfit(
            pdata=sim_pdata, prior=prior, p0=fit.pmean, svdcut=SVDCUT,
            )
        print(sim_fit.format(pstyle=None))
        p = key_parameters(fit.pmean)
        sim_p = key_parameters(sim_fit.p)
        print('simulated - exact:', sim_p - p)
        print('          ', gv.fmt_chi2(gv.chi2(p - sim_p)))
Beispiel #6
0
def main():
    data = make_data('etas-Ds.h5')
    fitter = cf.CorrFitter(models=make_models())
    p0 = None
    prior = make_prior(8)                                               # 1
    for N in [1, 2]:                                                    # 2
        print(30 * '=', 'nterm =', N)
        fit = fitter.lsqfit(
            data=data, prior=prior, p0=p0, nterm=(N, N), svdcut=SVDCUT  # 3
            )
        print(fit)                                                      # 4
        p0 = fit.pmean
    print_results(fit, prior, data)
    if DISPLAYPLOTS:
        fit.show_plots()

    # check fit quality by adding noise
    print('\n==================== add svd, prior noise')
    noisy_fit = fitter.lsqfit(
        data=data, prior=prior, p0=fit.pmean, svdcut=SVDCUT, nterm=(N, N),
        noise=True, 
        )
    print(noisy_fit.format(pstyle=None))
    p = key_parameters(fit.p)
    noisy_p = key_parameters(noisy_fit.p)
    print('      fit:', p)
    print('noisy fit:', noisy_p)
    print('          ', gv.fmt_chi2(gv.chi2(p - noisy_p)))

    # simulated fit
    for sim_pdata in fitter.simulated_pdata_iter(
        n=2, dataset=cf.read_dataset('etas-Ds.h5'), p_exact=fit.pmean
        ):
        print('\n==================== simulation')
        sim_fit = fitter.lsqfit(
            pdata=sim_pdata, prior=prior, p0=fit.pmean, svdcut=SVDCUT,
            nterm=(N, N),
            )
        print(sim_fit.format(pstyle=None))
        p = key_parameters(fit.pmean)
        sim_p = key_parameters(sim_fit.p)
        print('simulated - exact:', sim_p - p)
        print('          ', gv.fmt_chi2(gv.chi2(p - sim_p)))
Beispiel #7
0
def main():
    data = make_data('Ds-Ds.h5')
    fitter = cf.CorrFitter(models=make_models())
    p0 = None
    for N in [1, 2, 3, 4]:
        print(30 * '=', 'nterm =', N)
        prior = make_prior(N)
        fit = fitter.lsqfit(data=data, prior=prior, p0=p0, svdcut=SVDCUT)
        print(fit.format(pstyle=None if N < 4 else 'v'))
        p0 = fit.pmean
    print_results(fit, prior, data)
    if SHOWPLOTS:
        fit.show_plots(save='Ds-Ds.{}.png', view='ratio')

    # check fit quality by adding noise
    print('\n==================== add svd, prior noise')
    noisy_fit = fitter.lsqfit(
        data=data, prior=prior, p0=fit.pmean, svdcut=SVDCUT,
        noise=True,
        )
    print(noisy_fit.format(pstyle=None))
    p = key_parameters(fit.p)
    noisy_p = key_parameters(noisy_fit.p)
    print('      fit:', p)
    print('noisy fit:', noisy_p)
    print('          ', gv.fmt_chi2(gv.chi2(p - noisy_p)))

    # simulated fit
    for sim_pdata in fitter.simulated_pdata_iter(
        n=2, dataset=h5py.File('Ds-Ds.h5', 'r'), p_exact=fit.pmean
        ):
        print('\n==================== simulation')
        sim_fit = fitter.lsqfit(
            pdata=sim_pdata, prior=prior, p0=fit.pmean, svdcut=SVDCUT,
            )
        print(sim_fit.format(pstyle=None))
        p = key_parameters(fit.pmean)
        sim_p = key_parameters(sim_fit.p)
        print('simulated - exact:', sim_p - p)
        print('          ', gv.fmt_chi2(gv.chi2(p - sim_p)))
Beispiel #8
0
def main():
    sys_stdout = sys.stdout
    sys.stdout = tee.tee(sys.stdout, open("eg3a.out","w"))
    x, y = make_data()
    prior = make_prior()
    fit = lsqfit.nonlinear_fit(prior=prior, data=(x,y), fcn=fcn)
    print fit
    print 'p1/p0 =', fit.p[1] / fit.p[0], '    p3/p2 =', fit.p[3] / fit.p[2]
    print 'corr(p0,p1) =', gv.evalcorr(fit.p[:2])[1,0]

    if DO_PLOT:
        plt.semilogx()
        plt.errorbar(
            x=gv.mean(x), xerr=gv.sdev(x), y=gv.mean(y), yerr=gv.sdev(y),
            fmt='ob'
            )
        # plot fit line
        xx = np.linspace(0.99 * gv.mean(min(x)), 1.01 * gv.mean(max(x)), 100)
        yy = fcn(xx, fit.pmean)
        plt.xlabel('x')
        plt.ylabel('y')
        plt.plot(xx, yy, ':r')
        plt.savefig('eg3.png', bbox_inches='tight')
        plt.show()

    sys.stdout = sys_stdout
    if DO_BOOTSTRAP:
        gv.ranseed(123)
        sys.stdout = tee.tee(sys_stdout, open('eg3c.out', 'w'))
        print fit
        print 'p1/p0 =', fit.p[1] / fit.p[0], '    p3/p2 =', fit.p[3] / fit.p[2]
        print 'corr(p0,p1) =', gv.evalcorr(fit.p[:2])[1,0]
        Nbs = 40
        outputs = {'p':[], 'p1/p0':[], 'p3/p2':[]}
        for bsfit in fit.bootstrap_iter(n=Nbs):
            p = bsfit.pmean
            outputs['p'].append(p)
            outputs['p1/p0'].append(p[1] / p[0])
            outputs['p3/p2'].append(p[3] / p[2])
        print '\nBootstrap Averages:'
        outputs = gv.dataset.avg_data(outputs, bstrap=True)
        print gv.tabulate(outputs)
        print 'corr(p0,p1) =', gv.evalcorr(outputs['p'][:2])[1,0]

        # make histograms of p1/p0 and p3/p2
        sys.stdout = sys_stdout
        print
        sys.stdout = tee.tee(sys_stdout, open('eg3d.out', 'w'))
        print 'Histogram Analysis:'
        count = {'p1/p0':[], 'p3/p2':[]}
        hist = {
            'p1/p0':gv.PDFHistogram(fit.p[1] / fit.p[0]),
            'p3/p2':gv.PDFHistogram(fit.p[3] / fit.p[2]),
            }
        for bsfit in fit.bootstrap_iter(n=1000):
            p = bsfit.pmean
            count['p1/p0'].append(hist['p1/p0'].count(p[1] / p[0]))
            count['p3/p2'].append(hist['p3/p2'].count(p[3] / p[2]))
        count = gv.dataset.avg_data(count)
        plt.rcParams['figure.figsize'] = [6.4, 2.4]
        pltnum = 1
        for k in count:
            print k + ':'
            print hist[k].analyze(count[k]).stats
            plt.subplot(1, 2, pltnum)
            plt.xlabel(k)
            hist[k].make_plot(count[k], plot=plt)
            if pltnum == 2:
                plt.ylabel('')
            pltnum += 1
        plt.rcParams['figure.figsize'] = [6.4, 4.8]
        plt.savefig('eg3d.png', bbox_inches='tight')
        plt.show()

    if DO_BAYESIAN:
        gv.ranseed(123)
        sys.stdout = tee.tee(sys_stdout, open('eg3e.out', 'w'))
        print fit
        expval = lsqfit.BayesIntegrator(fit)

        # adapt integrator to PDF from fit
        neval = 1000
        nitn = 10
        expval(neval=neval, nitn=nitn)

        # <g(p)> gives mean and covariance matrix, and histograms
        hist = [
            gv.PDFHistogram(fit.p[0]), gv.PDFHistogram(fit.p[1]),
            gv.PDFHistogram(fit.p[2]), gv.PDFHistogram(fit.p[3]),
            ]
        def g(p):
            return dict(
                mean=p,
                outer=np.outer(p, p),
                count=[
                    hist[0].count(p[0]), hist[1].count(p[1]),
                    hist[2].count(p[2]), hist[3].count(p[3]),
                    ],
                )

        # evaluate expectation value of g(p)
        results = expval(g, neval=neval, nitn=nitn, adapt=False)

        # analyze results
        print('\nIterations:')
        print(results.summary())
        print('Integration Results:')
        pmean = results['mean']
        pcov =  results['outer'] - np.outer(pmean, pmean)
        print '    mean(p) =', pmean
        print '    cov(p) =\n', pcov

        # create GVars from results
        p = gv.gvar(gv.mean(pmean), gv.mean(pcov))
        print('\nBayesian Parameters:')
        print(gv.tabulate(p))

        # show histograms
        print('\nHistogram Statistics:')
        count = results['count']
        for i in range(4):
            print('p[{}] -'.format(i))
            print(hist[i].analyze(count[i]).stats)
            plt.subplot(2, 2, i + 1)
            plt.xlabel('p[{}]'.format(i))
            hist[i].make_plot(count[i], plot=plt)
            if i % 2 != 0:
                plt.ylabel('')
        plt.savefig('eg3e.png', bbox_inches='tight')
        plt.show()

    if DO_SIMULATION:
        gv.ranseed(1234)
        sys.stdout = tee.tee(sys_stdout, open('eg3f.out', 'w'))
        print(40 * '*' + ' real fit')
        print(fit.format(True))

        Q = []
        p = []
        for sfit in fit.simulated_fit_iter(n=3, add_priornoise=False):
            print(40 * '=' + ' simulation')
            print(sfit.format(True))
            diff = sfit.p - sfit.pexact
            print '\nsfit.p - pexact =', diff
            print(gv.fmt_chi2(gv.chi2(diff)))
            print

    # omit constraint
    sys.stdout = tee.tee(sys_stdout, open("eg3b.out", "w"))
    prior = gv.gvar(4 * ['0(1)'])
    prior[1] = gv.gvar('0(20)')
    fit = lsqfit.nonlinear_fit(prior=prior, data=(x,y), fcn=fcn)
    print fit
    print 'p1/p0 =', fit.p[1] / fit.p[0], '    p3/p2 =', fit.p[3] / fit.p[2]
    print 'corr(p0,p1) =', gv.evalcorr(fit.p[:2])[1,0]
def print_fit(fit, prior,do_v_symm=False):
 ## -- print the fit parameters neatly
 ## -- give both summed and differential energies
 ## -- if variables fit as logs, give both log and linear
 ## --
 do_unicode=False
 do_sigdigit=True
 #
 print '        '+gv.fmt_chi2(fit)
 print fmt_reduced_chi2(fit,do_v_symm)
 print
 print "Printing best fit parameters : "
 #
 for skey in sorted(fit.p):
  spkey = skey.split('_')
  keylen = len(spkey)
  if keylen == 1:
   ikey = -1
   jkey = -1
   ksuf = ''
  elif keylen == 2:
   ikey = int(spkey[1])
   jkey = -1
   ksuf = '_'+str(ikey)
  elif keylen == 3:
   ikey = int(spkey[1])
   jkey = int(spkey[2])
   ksuf = '_'+str(ikey)+'_'+str(jkey)
  else:
   raise KeyError("too many underscores in key name")
  bkey = ut.get_basekey(skey.split('_')[0])
  ## -- if variable was fit as a log, print log first
  if bkey[0] == 'log':
   efirst=0.
   lkey=bkey[1]
   for j in range(len(fit.p[lkey+ksuf])):
    sigstr=get_sigma_str(lkey+ksuf,fit,prior,j,do_unicode)
    if (lkey[-2:] == 'En' or \
        lkey[-2:] == 'Eo' or \
        lkey[-1 ] == 'E') and keylen == 1:
     if j > 0:
      print '{:>10}'.format(bkey[0]+lkey+ksuf)+'['+'{:>2}'.format(j)+']      :  '\
            +ut.fmt_num(sum(fit.p[skey][:j+1]),do_sigdigit,do_unicode)\
            +'  '+sigstr+' |    delE'+'['+'{:>2}'.format(j)+']  :  '\
            +ut.fmt_num(fit.p[skey][j],do_sigdigit,do_unicode)
     ##else j==0 for energy
     else:
      print '{:>10}'.format(bkey[0]+lkey+ksuf)+'['+'{:>2}'.format(j)+']      :  '\
            +ut.fmt_num(sum(fit.p[skey][:j+1]),do_sigdigit,do_unicode)\
            +'  '+sigstr
    elif(lkey[-2:] == 'En' or \
         lkey[-2:] == 'Eo' or \
         lkey[-1 ] == 'E') and keylen > 1:
     efst = 0
     for i in range(ikey):
      efst += fit.p[skey][0]
      #print i,efst,lkey.split('_')[0]+'_'+str(i)
     if j > 0:
      print '{:>10}'.format(bkey[0]+lkey+ksuf)+'['+'{:>2}'.format(j)+']      :  '\
            +ut.fmt_num(efst+sum(fit.p[skey][:j+1]),do_sigdigit,do_unicode)\
            +'  '+sigstr+' |    delE'+'['+'{:>2}'.format(j)+']  :  '\
            +ut.fmt_num(fit.p[skey][j],do_sigdigit,do_unicode)
     ##else j==0 for energy
     else:
      print '{:>10}'.format(bkey[0]+lkey+ksuf)+'['+'{:>2}'.format(j)+']      :  '\
            +ut.fmt_num(efst+sum(fit.p[skey][:j+1]),do_sigdigit,do_unicode)\
            +'  '+sigstr
    ##else not energy
    else:
      print '{:>10}'.format(bkey[0]+lkey+ksuf)+'['+'{:>2}'.format(j)+']      :  '\
            +ut.fmt_num(fit.p[skey][j],do_sigdigit,do_unicode)\
            +'  '+sigstr
  ##endif log
  elif bkey[0] == 'sqrt':
   #print "------"
   efirst=0.
   lkey=bkey[1]
   for j in range(len(fit.p[skey])):
    sigstr=get_sigma_str(lkey+ksuf,fit,prior,j,do_unicode)
    if (lkey[-2:] == 'En' or \
        lkey[-2:] == 'Eo' or \
        lkey[-1 ] == 'E'):
     if j > 0:
      print '{:>10}'.format(bkey[0]+lkey+ksuf)+'['+'{:>2}'.format(j)+']      :  '\
            +ut.fmt_num(sum(fit.p[skey][:j+1]),do_sigdigit,do_unicode)\
            +'  '+sigstr+' |    delE'+'['+'{:>2}'.format(j)+']  :  '\
            +ut.fmt_num(fit.p[skey][j],do_sigdigit,do_unicode)
     ##else j==0 for energy
     else:
      print '{:>10}'.format(bkey[0]+lkey+ksuf)+'['+'{:>2}'.format(j)+']      :  '\
            +ut.fmt_num(sum(fit.p[skey][:j+1]),do_sigdigit,do_unicode)\
            +'  '+sigstr
    ##else not energy
    else:
      print '{:>10}'.format(bkey[0]+lkey+ksuf)+'['+'{:>2}'.format(j)+']      :  '\
            +ut.fmt_num(fit.p[skey][j],do_sigdigit,do_unicode)\
            +'  '+sigstr
   ##endif sqrt
  else: ## not log, sqrt
   efirst=0.
   for j in range(len(fit.p[skey])):
    if bkey[1][-2:] == 'nn' or bkey[1][-2:] == 'no' or\
       bkey[1][-2:] == 'on' or bkey[1][-2:] == 'oo':
      pass
    else:
      sigstr=get_sigma_str(bkey[1]+ksuf,fit,prior,j,do_unicode)
    if (bkey[1][-2:] == 'En' or \
        bkey[1][-2:] == 'Eo' or \
        bkey[1][-1 ] == 'E'):
     if j > 0:
      print '{:>10}'.format(bkey[1]+ksuf)+'['+'{:>2}'.format(j)+']      :  '\
            +ut.fmt_num(sum(fit.p[skey][:j+1]),do_sigdigit,do_unicode)\
            +'  '+sigstr+' |    delE'+'['+'{:>2}'.format(j)+']  :  '\
            +ut.fmt_num(fit.p[skey][j],do_sigdigit,do_unicode)
     ##else j==0 for energy
     else:
      print '{:>10}'.format(bkey[1]+ksuf)+'['+'{:>2}'.format(j)+']      :  '\
            +ut.fmt_num(sum(fit.p[skey][:j+1]),do_sigdigit,do_unicode)\
            +'  '+sigstr
    elif(bkey[1][-2:] == 'En' or \
         bkey[1][-2:] == 'Eo' or \
         bkey[1][-1 ] == 'E'):
     if j > 0:
      print '{:>10}'.format(bkey[1]+ksuf)+'['+'{:>2}'.format(j)+']      :  '\
            +ut.fmt_num(sum(fit.p[skey][:j+1]),do_sigdigit,do_unicode)\
            +'  '+sigstr+' |    delE'+'['+'{:>2}'.format(j)+']  :  '\
            +ut.fmt_num(fit.p[skey][j],do_sigdigit,do_unicode)
     ##else j==0 for energy
     else:
      print '{:>10}'.format(bkey[1]+ksuf)+'['+'{:>2}'.format(j)+']      :  '\
            +ut.fmt_num(sum(fit.p[skey][:j+1]),do_sigdigit,do_unicode)\
            +'  '+sigstr
    elif(bkey[1][-2:] == 'gn' or \
         bkey[1][-2:] == 'go'):
     if j > 0:
      print '{:>10}'.format(bkey[1]+ksuf)+'['+'{:>2}'.format(j)+']      :  '\
            +ut.fmt_num(fit.p[skey][0]+fit.p[skey][j],\
             do_sigdigit,do_unicode)\
            +'  '+sigstr+' |    delg'+'['+'{:>2}'.format(j)+']  :  '\
            +ut.fmt_num(fit.p[skey][j],do_sigdigit,do_unicode)
     ##else j==0 for energy
     else:
      print '{:>10}'.format(bkey[1]+ksuf)+'['+'{:>2}'.format(j)+']      :  '\
            +ut.fmt_num(fit.p[skey][0],do_sigdigit,do_unicode)\
            +'  '+sigstr
    ##else not energy
    else:
     if bkey[1][-2:] == 'nn' or bkey[1][-2:] == 'no' or\
        bkey[1][-2:] == 'on' or bkey[1][-2:] == 'oo':
       if df.do_v_symmetric and\
        ((bkey[1][-2:] == 'nn' or bkey[1][-2:] == 'oo') and\
         (ikey == jkey) ):
        if (keylen > 1):
         xi = 1
        else:
         xi = 0
        ## -- upper triangle matrix 3-point factors
        vlen = int(np.sqrt(8*len(fit.p[skey])+1)-1)/2
        ui = np.triu_indices(vlen)
        i = ui[0][j]+xi
        k = ui[1][j]+xi
        sigstr=get_sigma_str(bkey[1]+ksuf,fit,prior,j,do_unicode)
        print '{:>10}'.format(bkey[1]+ksuf)+'['+'{:>2}'.format(i)+']'\
              +'['+'{:>2}'.format(k)+']  :  '\
              +ut.fmt_num(fit.p[skey][j],do_sigdigit,do_unicode)\
              +'  '+sigstr
       else:
        ## -- print 3-point factors
        for k in range(len(fit.p[skey][0])):
          sigstr=get_sigma_str(bkey[1]+ksuf,fit,prior,(j,k),do_unicode)
          print '{:>10}'.format(bkey[1]+ksuf)+'['+'{:>2}'.format(j)+']'\
                +'['+'{:>2}'.format(k)+']  :  '\
                +ut.fmt_num(fit.p[skey][j][k],do_sigdigit,do_unicode)\
                +'  '+sigstr
     else:
       print '{:>10}'.format(bkey[1]+ksuf)+'['+'{:>2}'.format(j)+']      :  '\
             +ut.fmt_num(fit.p[skey][j],do_sigdigit,do_unicode)\
             +'  '+sigstr
 #
 print "------"