Beispiel #1
0
def deliver_left_coupler():
    g.turn_left_gyro(130)
    g.forwards_gyro_until_bump()
    m.move_wrist(884)
    s.wfollow_left_until_black_right_front(0)
    s.wfollow_left_until_black_left()
    g.backwards_gyro_until_both_white_cliffs()
    s.align_close_cliffs()
    g.backwards_gyro(1150)
    g.turn_right_gyro(25)
    m.move_arm(c.ARM_JUST_BARELY_ON_T_POS)
def align_on_wall_right():
    m.base_veer_right(0.5)
    wait_until(isRoombaBumped)
    m.deactivate_motors()
    u.halve_speeds()
    m.base_turn_left()
    wait_until(isRoombaNotBumped)
    m.deactivate_motors()
    msleep(100)
    g.turn_right_gyro(4)
    msleep(100)
Beispiel #3
0
def get_firefighters():
    if c.SAFE_HOSPITAL == c.NEAR_ZONE:
        g.drive_gyro_until_black_left()
        m.lift_ambulance_arm()
        g.drive_gyro_through_line_left()

    else:
        g.drive_gyro_until_black_left()
        m.lift_ambulance_arm()
        g.drive_gyro_through_line_left()
        s.lfollow_right_pid_until_black_left(bias=15)
        s.turn_right_until_black(0)
        s.turn_right_until_white()
        m.lower_arm()
    g.drive_gyro_through_line_left()
    s.turn_right_until_black_left()
    s.turn_right_until_white_left()
    g.turn_right_gyro(15)
Beispiel #4
0
def get_left_coupler():
    # Gets to the bottom left square
    g.forwards_gyro_through_line_rfcliff()
    s.align_far_fcliffs()
    g.forwards_gyro_until_white_rfcliff()
    s.align_on_wall_left()
    s.wfollow_left_smooth_until_white_rfcliff(0)
    s.wfollow_left_smooth_until_black_rfcliff()
    s.align_close_fcliffs()
    # Turns right and goes to top left coupler
    g.turn_right_gyro(85)
    g.forwards_gyro_through_line_rfcliff()
    s.lfollow_lfcliff_until_bump_pid(bias=15)
    g.backwards_gyro(100)
    s.turn_right_until_rfcliff_senses_white(0)
    msleep(1500)
    s.turn_right_until_rfcliff_senses_black(c.RIGHT_TURN_TIME * 6)
    s.lfollow_rfcliff_until_lfcliff_senses_black_pid()
    m.lower_arm()
    g.turn_left_gyro(23)
    g.backwards_gyro(1125)
    #g.backwards_gyro_until_item_is_in_claw(1100)
    pick_up_coupler()
Beispiel #5
0
def get_blocks():
    g.backwards_gyro_until_black_left()
    s.align_far()
    g.backwards_gyro_through_line_left(0)
    g.backwards_gyro_until_black_left()
    s.align_far()
    g.backwards_gyro_through_line_left(0)
    g.backwards_gyro(300)
    g.turn_right_gyro(90)
    g.drive_gyro(2000, should_stop=False)
    g.drive_gyro_until_white_left(0)
    g.drive_gyro_until_black_left(0)
    g.drive_gyro(500, should_stop=False)
    g.drive_gyro_until_white_left(0)
    g.drive_gyro(950)
    s.turn_left_until_black()
    m.open_claw()
    m.lower_arm()
    #s.lfollow_left_pid(13000, bias=15, should_stop=False)
    s.lfollow_left_pid_until_black_third(time=21000, bias=10)
    m.close_claw()
    g.backwards_gyro(800)
    m.lift_arm(1, 1)
    s.lfollow_left_pid_until_black_right(bias=10)
Beispiel #6
0
def test_gyro_turns():
    print "Turning right 90 degrees."
    g.turn_right_gyro()
    msleep(500)
    print "Turning left 90 degrees."
    g.turn_left_gyro()
    msleep(500)
    print "Turning right 180 degrees."
    g.turn_right_gyro(180)
    msleep(500)
    print "Turning left 180 degrees."
    g.turn_left_gyro(180)
    msleep(500)
    print "Turning right 360 degrees."
    g.turn_right_gyro(360)
    msleep(500)
    print "Turning left 360 degrees."
    g.turn_left_gyro(360)
    msleep(500)
    sd()
Beispiel #7
0
def calibrate_with_gyro_angle_calibration():
    # Initialize variables.
    c.MIN_SENSOR_VALUE_LCLIFF = 90000
    c.MAX_SENSOR_VALUE_LCLIFF = 0
    c.MAX_SENSOR_VALUE_RCLIFF = 0
    c.MIN_SENSOR_VALUE_RCLIFF = 90000
    c.MAX_SENSOR_VALUE_LFCLIFF = 0
    c.MIN_SENSOR_VALUE_LFCLIFF = 90000
    c.MAX_SENSOR_VALUE_RFCLIFF = 0
    c.MIN_SENSOR_VALUE_RFCLIFF = 90000
    angle = 0
    error = 0
    total_left_speed = 0
    total_right_speed = 0
    run_throughs = 0
    sec = seconds() + 3
    print "Running calibrate()"
    m.activate_motors(int(c.BASE_LM_POWER / 2), int(c.BASE_RM_POWER / 2))
    while seconds() < sec:
        if get_create_lcliff_amt() > c.MAX_SENSOR_VALUE_LCLIFF:
            c.MAX_SENSOR_VALUE_LCLIFF = get_create_lcliff_amt()
        if get_create_lcliff_amt() < c.MIN_SENSOR_VALUE_LCLIFF:
            c.MIN_SENSOR_VALUE_LCLIFF = get_create_lcliff_amt()
        if get_create_rcliff_amt() > c.MAX_SENSOR_VALUE_RCLIFF:
            c.MAX_SENSOR_VALUE_RCLIFF = get_create_rcliff_amt()
        if get_create_rcliff_amt() < c.MIN_SENSOR_VALUE_RCLIFF:
            c.MIN_SENSOR_VALUE_RCLIFF = get_create_rcliff_amt()
        if get_create_lfcliff_amt() > c.MAX_SENSOR_VALUE_LFCLIFF:
            c.MAX_SENSOR_VALUE_LFCLIFF = get_create_lfcliff_amt()
        if get_create_lfcliff_amt() < c.MIN_SENSOR_VALUE_LFCLIFF:
            c.MIN_SENSOR_VALUE_LFCLIFF = get_create_lfcliff_amt()
        if get_create_rfcliff_amt() > c.MAX_SENSOR_VALUE_RFCLIFF:
            c.MAX_SENSOR_VALUE_RFCLIFF = get_create_rfcliff_amt()
        if get_create_rfcliff_amt() < c.MIN_SENSOR_VALUE_RFCLIFF:
            c.MIN_SENSOR_VALUE_RFCLIFF = get_create_rfcliff_amt()
        left_speed = int(c.BASE_LM_POWER / 2) + error
        right_speed = int(c.BASE_RM_POWER / 2) - error
        m.activate_motors(left_speed, right_speed)
        total_left_speed += left_speed
        total_right_speed += right_speed
        run_throughs += 1
        msleep(10)
        angle += (gyro_z() - g.bias) * 10
        error = 0.003830106222 * angle  # Positive error means veering left. Negative means veering right.
    m.deactivate_motors()
    c.LCLIFF_BW = (
        (c.MAX_SENSOR_VALUE_LCLIFF + c.MIN_SENSOR_VALUE_LCLIFF) / 2) + 100
    c.RCLIFF_BW = (
        (c.MAX_SENSOR_VALUE_RCLIFF + c.MIN_SENSOR_VALUE_RCLIFF) / 2) + 100
    c.LFCLIFF_BW = (
        (c.MAX_SENSOR_VALUE_LFCLIFF + c.MIN_SENSOR_VALUE_LFCLIFF) / 2) + 100
    c.RFCLIFF_BW = (
        (c.MAX_SENSOR_VALUE_RFCLIFF + c.MIN_SENSOR_VALUE_RFCLIFF) / 2) + 200
    c.BASE_LM_POWER = int((total_left_speed * 2) / run_throughs)
    c.BASE_RM_POWER = int((total_right_speed * 2) / run_throughs)
    c.FULL_LM_POWER = c.BASE_LM_POWER
    c.FULL_RM_POWER = c.BASE_RM_POWER
    c.HALF_LM_POWER = int(c.BASE_LM_POWER) / 2
    c.HALF_RM_POWER = int(c.BASE_RM_POWER) / 2
    print "LCLIFF_BW: " + str(c.LCLIFF_BW)
    print "RCLIFF_BW: " + str(c.RCLIFF_BW)
    print "LFCLIFF_BW: " + str(c.LFCLIFF_BW)
    print "RFCLIFF_BW: " + str(c.RFCLIFF_BW)
    print "BASE_LM_POWER: " + str(c.BASE_LM_POWER)
    print "BASE_RM_POWER: " + str(c.BASE_RM_POWER)
    msleep(100)
    s.backwards_until_black_cliffs()
    s.align_far_cliffs()
    s.turn_left_until_lfcliff_senses_black(0)
    g.determine_gyro_conversion_rate()
    msleep(100)
    g.turn_right_gyro(45)
    s.backwards_until_black_lfcliff()
    s.align_far_fcliffs()
    s.backwards_through_line_lfcliff()
    s.align_close_fcliffs()
    m.backwards(200)
    msleep(300)
    ao()
    # DON'T DELETE THESE NEXT 4 LINES. They are purposeful. It avoids the roomba going into sleep mode after the calibration and not starting right.
    create_disconnect()
    msleep(4000)
    #wait_for_light(c.LIGHT_SENSOR)
    create_connect()
    shut_down_in(120)  # URGENT: PUT BACK IN BEFORE COMPETITION