def frame_reducers(ip, port): # Connect to h2o h2o.init(ip, port) data = [[random.uniform(-10000, 10000) for r in range(10)] for c in range(10)] h2o_data = h2o.H2OFrame(python_obj=data) np_data = np.array(data) row, col = h2o_data.dim() c = random.randint(0, col - 1) h2o_val = h2o.min(h2o_data[c]) num_val = np.min(np_data[:, c]) assert abs(h2o_val - num_val) < 1e-06, \ "check unsuccessful! h2o computed {0} and numpy computed {1}. expected equal min values between h2o and " \ "numpy".format(h2o_val,num_val) h2o_val = h2o.max(h2o_data[c]) num_val = np.max(np_data[:, c]) assert abs(h2o_val - num_val) < 1e-06, \ "check unsuccessful! h2o computed {0} and numpy computed {1}. expected equal max values between h2o and " \ "numpy".format(h2o_val,num_val) h2o_val = h2o.sum(h2o_data[c]) num_val = np.sum(np_data[:, c]) assert abs(h2o_val - num_val) < 1e-06, \ "check unsuccessful! h2o computed {0} and numpy computed {1}. expected equal sum values between h2o and " \ "numpy".format(h2o_val,num_val) h2o_val = h2o.sd(h2o_data[c]) num_val = np.std(np_data[:, c], axis=0, ddof=1) assert abs(h2o_val - num_val) < 1e-06, \ "check unsuccessful! h2o computed {0} and numpy computed {1}. expected equal sd values between h2o and " \ "numpy".format(h2o_val,num_val) h2o_val = h2o.var(h2o_data[c]) num_val = np.var(np_data[:, c], ddof=1) assert abs(h2o_val - num_val) < 1e-06, \ "check unsuccessful! h2o computed {0} and numpy computed {1}. expected equal var values between h2o and " \ "numpy".format(h2o_val,num_val) h2o_val = h2o.mean(h2o_data[c]) num_val = np.mean(np_data[:, c]) assert abs(h2o_val - num_val) < 1e-06, \ "check unsuccessful! h2o computed {0} and numpy computed {1}. expected equal mean values between h2o and " \ "numpy".format(h2o_val,num_val) h2o_val = h2o.median(h2o_data[c]) num_val = np.median(np_data[:, c]) assert abs(h2o_val - num_val) < 1e-06, \ "check unsuccessful! h2o computed {0} and numpy computed {1}. expected equal median values between h2o and " \ "numpy".format(h2o_val,num_val)
def frame_reducers(ip,port): # Connect to h2o h2o.init(ip,port) data = [[random.uniform(-10000,10000) for r in range(10)] for c in range(10)] h2o_data = h2o.H2OFrame(python_obj=data) np_data = np.array(data) row, col = h2o_data.dim() c = random.randint(0,col-1) h2o_val = h2o.min(h2o_data[c]) num_val = np.min(np_data[:,c]) assert abs(h2o_val - num_val) < 1e-06, \ "check unsuccessful! h2o computed {0} and numpy computed {1}. expected equal min values between h2o and " \ "numpy".format(h2o_val,num_val) h2o_val = h2o.max(h2o_data[c]) num_val = np.max(np_data[:,c]) assert abs(h2o_val - num_val) < 1e-06, \ "check unsuccessful! h2o computed {0} and numpy computed {1}. expected equal max values between h2o and " \ "numpy".format(h2o_val,num_val) h2o_val = h2o.sum(h2o_data[c]) num_val = np.sum(np_data[:,c]) assert abs(h2o_val - num_val) < 1e-06, \ "check unsuccessful! h2o computed {0} and numpy computed {1}. expected equal sum values between h2o and " \ "numpy".format(h2o_val,num_val) h2o_val = h2o.sd(h2o_data[c]) num_val = np.std(np_data[:,c], axis=0, ddof=1) assert abs(h2o_val - num_val) < 1e-06, \ "check unsuccessful! h2o computed {0} and numpy computed {1}. expected equal sd values between h2o and " \ "numpy".format(h2o_val,num_val) h2o_val = h2o.var(h2o_data[c]) num_val = np.var(np_data[:,c], ddof=1) assert abs(h2o_val - num_val) < 1e-06, \ "check unsuccessful! h2o computed {0} and numpy computed {1}. expected equal var values between h2o and " \ "numpy".format(h2o_val,num_val) h2o_val = h2o.mean(h2o_data[c]) num_val = np.mean(np_data[:,c]) assert abs(h2o_val - num_val) < 1e-06, \ "check unsuccessful! h2o computed {0} and numpy computed {1}. expected equal mean values between h2o and " \ "numpy".format(h2o_val,num_val) h2o_val = h2o.median(h2o_data[c]) num_val = np.median(np_data[:,c]) assert abs(h2o_val - num_val) < 1e-06, \ "check unsuccessful! h2o computed {0} and numpy computed {1}. expected equal median values between h2o and " \ "numpy".format(h2o_val,num_val)
def expr_reducers(ip, port): # Connect to h2o h2o.init(ip, port) data = [[random.uniform(-10000, 10000) for r in range(10)] for c in range(10)] h2o_data = h2o.H2OFrame(python_obj=data) np_data = np.array(data) row, col = h2o_data.dim() h2o_data = h2o_data + 2 np_data = np_data + 2 def check_values(h2o_data, numpy_data): success = True for i in range(10): r = random.randint(0, row - 1) c = random.randint(0, col - 1) h2o_val = h2o_data[r, c] num_val = numpy_data[r, c] if not abs(h2o_val - num_val) < 1e-06: success = False print "check unsuccessful! h2o computed {0} and numpy computed {1}".format( h2o_val, num_val) return success h2o_val = h2o.min(h2o_data) num_val = np.min(np_data) assert abs(h2o_val - num_val) < 1e-06, \ "check unsuccessful! h2o computed {0} and numpy computed {1}. expected equal min values between h2o and " \ "numpy".format(h2o_val,num_val) h2o_val = h2o.max(h2o_data) num_val = np.max(np_data) assert abs(h2o_val - num_val) < 1e-06, \ "check unsuccessful! h2o computed {0} and numpy computed {1}. expected equal max values between h2o and " \ "numpy".format(h2o_val,num_val) h2o_val = h2o.sum(h2o_data) num_val = np.sum(np_data) assert abs(h2o_val - num_val) < 1e-06, \ "check unsuccessful! h2o computed {0} and numpy computed {1}. expected equal sum values between h2o and " \ "numpy".format(h2o_val,num_val) h2o.np_comparison_check(h2o.var(h2o_data), np.cov(np_data, rowvar=0, ddof=1), 10), \ "expected equal var values between h2o and numpy"
def expr_reducers(ip,port): # Connect to h2o h2o.init(ip,port) data = [[random.uniform(-10000,10000) for r in range(10)] for c in range(10)] h2o_data = h2o.H2OFrame(python_obj=data) np_data = np.array(data) row, col = h2o_data.dim() h2o_data = h2o_data + 2 np_data = np_data + 2 def check_values(h2o_data, numpy_data): success = True for i in range(10): r = random.randint(0,row-1) c = random.randint(0,col-1) h2o_val = h2o_data[r,c] num_val = numpy_data[r,c] if not abs(h2o_val - num_val) < 1e-06: success = False print "check unsuccessful! h2o computed {0} and numpy computed {1}".format(h2o_val,num_val) return success h2o_val = h2o.min(h2o_data) num_val = np.min(np_data) assert abs(h2o_val - num_val) < 1e-06, \ "check unsuccessful! h2o computed {0} and numpy computed {1}. expected equal min values between h2o and " \ "numpy".format(h2o_val,num_val) h2o_val = h2o.max(h2o_data) num_val = np.max(np_data) assert abs(h2o_val - num_val) < 1e-06, \ "check unsuccessful! h2o computed {0} and numpy computed {1}. expected equal max values between h2o and " \ "numpy".format(h2o_val,num_val) h2o_val = h2o.sum(h2o_data) num_val = np.sum(np_data) assert abs(h2o_val - num_val) < 1e-06, \ "check unsuccessful! h2o computed {0} and numpy computed {1}. expected equal sum values between h2o and " \ "numpy".format(h2o_val,num_val) h2o.np_comparison_check(h2o.var(h2o_data), np.cov(np_data, rowvar=0, ddof=1), 10), \ "expected equal var values between h2o and numpy"