Beispiel #1
0
def walker_vs_hadley(run, lonin=[370., 10.]):
    data = xr.open_dataset('/disca/share/rg419/Data_moist/climatologies/' +
                           run + '.nc')
    #walker_mag = walker_strength(data, lonin=[90.,180.])
    walker_mag = walker_strength(data, lonin=[270., 360.], psi_min=False)
    edge_loc, psi_max, psi_max_loc = get_edge_psi(data, lonin=lonin)
    times = np.intersect1d(walker_mag.xofyear.values, psi_max.xofyear)
    plt.plot(psi_max.sel(xofyear=times), walker_mag.sel(xofyear=times), 'x')
Beispiel #2
0
def get_max_overturning(data):
    n = len(data)

    psi_max = []
    for i in range(n):
        vars = get_edge_psi(data[i], lev=500.)
        psi_max.append(vars[1])
    return psi_max
def plot_bs_fig_9_moist(run, pentads=[35, 40, 45, 50], rotfac=1.):

    plot_dir = '/scratch/rg419/plots/paper_2_figs/revisions/heatbudg_moist/'
    mkdir = sh.mkdir.bake('-p')
    mkdir(plot_dir)
    rcParams['figure.figsize'] = 5.5, 7.
    rcParams['font.size'] = 14

    data = xr.open_dataset('/disca/share/rg419/Data_moist/climatologies/' +
                           run + '.nc')
    data['precipitation'] = make_sym(data.precipitation)
    precip_centroid(data)  # Locate precipitation centroid
    dpcentdt = gr.ddt(data.p_cent) * 86400.
    p_cent_pos = np.abs(data.p_cent.where(dpcentdt >= 0.))

    eq_time = p_cent_pos.xofyear[p_cent_pos.argmin('xofyear').values]
    peak_rate_time = dpcentdt.xofyear[dpcentdt.argmax('xofyear').values]
    max_lat_time = data.p_cent.xofyear[data.p_cent.argmax('xofyear').values]

    edge_loc, psi_max, psi_max_loc = get_edge_psi(data,
                                                  lev=850.,
                                                  thresh=0.,
                                                  intdown=True)

    fig, (ax1, ax2, ax3, ax4) = plt.subplots(4, sharex=True)
    axes = [ax1, ax2, ax3, ax4]
    pentads = [
        eq_time.values, peak_rate_time.values,
        np.floor((peak_rate_time.values + max_lat_time.values) / 2.),
        max_lat_time.values
    ]

    for i in range(4):
        fig_9_moist(run, ax=axes[i], pentad=pentads[i])
        edge = edge_loc.sel(xofyear=pentads[i])
        axes[i].plot([edge, edge], [-250., 250.], 'k:')
        axes[i].text(20, 240., 'Pentad ' + str(int(pentads[i])))

    ax4.set_xlabel('Latitude')

    #ax1.text(-55, 315., 'a)')
    #ax2.text(-55, 315., 'b)')
    #ax3.text(-55, 315., 'c)')
    #ax4.text(-55, 315., 'd)')

    plt.subplots_adjust(left=0.15, right=0.95, top=0.97, bottom=0.1)
    plt.savefig(plot_dir + 'sb08_fig9_moist_' + run + '.pdf', format='pdf')
    plt.close()
def set_vars(data, plottype=None, lonin=[-1.,361.], thresh=0.):
    # Load up variables to plot, depending on plot type
    edge_loc, psi_max, psi_max_loc = get_edge_psi(data, thresh=thresh, lev=lev, lonin=lonin, nh=True, sanity_check=True)
        
    if plottype == 'mse':
        data_mse = peak_mse(data, lonin=lonin)
        vars_out = (data_mse.mse_max_loc, psi_max)
        
    elif plottype == 'pcent':
        data = precip_centroid(data,lonin=lonin)
        vars_out = (data.p_cent, psi_max)

    elif plottype == None:
        vars_out = (edge_loc, psi_max)
    
    return vars_out
Beispiel #5
0
def overturning_plot(data,
                     ax_in,
                     lonin=[-1., 361.],
                     do_xlabels=False,
                     month_labels=True,
                     thresh=0.,
                     nh=False):

    lons = pick_lons(data, lonin)

    psi = mass_streamfunction(data, a=6376.0e3, dp_in=50., lons=lons)
    psi /= 1.e9

    edge_loc, psi_max, psi_max_loc = get_edge_psi(data,
                                                  lonin=lonin,
                                                  lev=500.,
                                                  thresh=thresh,
                                                  nh=nh)

    f1 = psi.sel(pfull=500.).plot.contourf(ax=ax_in,
                                           x='xofyear',
                                           y='lat',
                                           levels=np.arange(-500., 510., 50.),
                                           add_colorbar=False,
                                           add_labels=False,
                                           extend='both')
    edge_loc.plot(color='k', ax=ax_in)
    psi_max_loc.plot(color='k', ax=ax_in)

    ax_in.set_ylabel('Latitude')
    ax_in.set_ylim(-60, 60)
    ax_in.set_yticks(np.arange(-60., 61., 30.))
    ax_in.grid(True, linestyle=':')

    if month_labels:
        mn_dic = month_dic(1)
        tickspace = list(range(13, 72, 18))
        labels = [mn_dic[(k + 5) / 6] for k in tickspace]

        ax_in.set_xlim((1, 72))
        ax_in.set_xticks(tickspace)

        if do_xlabels:
            ax_in.set_xlabel('')
            ax_in.set_xticklabels(labels, rotation=25)

    return f1
Beispiel #6
0
    def set_vars(data, type=None, lonin=[-1., 361.], thresh=0.):

        edge_loc, psi_max, psi_max_loc = get_edge_psi(data,
                                                      thresh=thresh,
                                                      lev=lev,
                                                      lonin=lonin)

        if type == 'mse':
            data_mse = peak_mse(data, lonin=lonin)
            vars_out = (data_mse.mse_max_loc, psi_max)

        elif type == 'pcent':
            data = precip_centroid(data, lonin=lonin)
            vars_out = (data.p_cent, psi_max)

        elif type == None:
            vars_out = (edge_loc, psi_max)

        return vars_out
Beispiel #7
0
def hadley_strength_plot(run, lonin=[370., 10.], c='C0'):
    data = xr.open_dataset('/disca/share/rg419/Data_moist/climatologies/' +
                           run + '.nc')
    edge_loc, hadley_mag, psi_max_loc = get_edge_psi(data, lonin=lonin)
    plt.plot(hadley_mag.xofyear, hadley_mag, 's', color=c)
def pcent_vs_cell_edge(data, symbol='xk'):
    precip_centroid(data)
    edge_loc, psi_max, psi_max_loc = get_edge_psi(data, thresh=0.)

    plt.plot(data.p_cent, edge_loc, symbol)
Beispiel #9
0
    else:
        plt.ylim([0, int(latmax) + 5])
        plt.xlim([0, int(psimax) + 50])
    plt.savefig('/scratch/rg419/plots/regime_fig/' + plotname + '.pdf',
                format='pdf')
    plt.close()


if __name__ == "__main__":

    #vars_zs = get_edge_psi('zs_sst', thresh=thresh, lev=lev, sanity_check=True)
    #vars_co2 = get_edge_psi('ap10_co2', thresh=thresh, lev=lev, sanity_check=True)
    #vars_qflux = get_edge_psi('ap10_qflux', thresh=thresh, lev=lev, sanity_check=True)

    #vars_ap2 = get_edge_psi('ap_2', thresh=thresh, lev=lev)
    vars_ap10 = get_edge_psi('sn_1.000', thresh=thresh, lev=lev)
    #vars_ap20 = get_edge_psi('ap_20', thresh=thresh, lev=lev)
    #vars_full = get_edge_psi('full_qflux', thresh=thresh, lonin=[60.,150.], lev=lev)
    vars_sn05 = get_edge_psi('sn_0.500', thresh=thresh, lev=lev)
    vars_sn20 = get_edge_psi('sn_2.000', thresh=thresh, lev=lev)
#vars_rt05 = get_edge_psi('rt_0.500', thresh=0., lev=lev)
#vars_rt10 = get_edge_psi('sn_1.000', thresh=0., lev=lev)
#vars_rt20 = get_edge_psi('rt_2.000', thresh=0., lev=lev)

#vars = [vars_ap10]
#plot_multiple(vars, 'mlds_10', s=['o'], psimin=200, psimax=470, latmax=25)

#vars = [vars_ap10]
#plot_multiple(vars, 'mlds_10_line', s=['o'], ll=[True], lh=[True], psimin=200, psimax=470, latmax=25)

#vars = [vars_ap10, vars_co2, vars_qflux]