Beispiel #1
0
    def blockmatrix_irs(self):
        scalar_ir = ir.F64(2)
        vector_ir = ir.MakeArray([ir.F64(3), ir.F64(2)],
                                 hl.tarray(hl.tfloat64))

        read = ir.BlockMatrixRead(
            ir.BlockMatrixNativeReader(resource('blockmatrix_example/0')))
        add_two_bms = ir.BlockMatrixMap2(
            read, read, 'l', 'r',
            ir.ApplyBinaryPrimOp('+', ir.Ref('l'), ir.Ref('r')), "Union")
        negate_bm = ir.BlockMatrixMap(
            read, 'element', ir.ApplyUnaryPrimOp('-', ir.Ref('element')),
            False)
        sqrt_bm = ir.BlockMatrixMap(
            read, 'element',
            hl.sqrt(construct_expr(ir.Ref('element'), hl.tfloat64))._ir, False)
        persisted = ir.BlockMatrixRead(ir.BlockMatrixPersistReader('x', read))

        scalar_to_bm = ir.ValueToBlockMatrix(scalar_ir, [1, 1], 1)
        col_vector_to_bm = ir.ValueToBlockMatrix(vector_ir, [2, 1], 1)
        row_vector_to_bm = ir.ValueToBlockMatrix(vector_ir, [1, 2], 1)
        broadcast_scalar = ir.BlockMatrixBroadcast(scalar_to_bm, [], [2, 2],
                                                   256)
        broadcast_col = ir.BlockMatrixBroadcast(col_vector_to_bm, [0], [2, 2],
                                                256)
        broadcast_row = ir.BlockMatrixBroadcast(row_vector_to_bm, [1], [2, 2],
                                                256)
        transpose = ir.BlockMatrixBroadcast(broadcast_scalar, [1, 0], [2, 2],
                                            256)
        matmul = ir.BlockMatrixDot(broadcast_scalar, transpose)

        rectangle = ir.Literal(hl.tarray(hl.tint64), [0, 1, 5, 6])
        band = ir.Literal(hl.ttuple(hl.tint64, hl.tint64), (-1, 1))
        intervals = ir.Literal(
            hl.ttuple(hl.tarray(hl.tint64), hl.tarray(hl.tint64)),
            ([0, 1, 5, 6], [5, 6, 8, 9]))

        sparsify1 = ir.BlockMatrixSparsify(read, rectangle,
                                           ir.RectangleSparsifier)
        sparsify2 = ir.BlockMatrixSparsify(read, band, ir.BandSparsifier(True))
        sparsify3 = ir.BlockMatrixSparsify(read, intervals,
                                           ir.RowIntervalSparsifier(True))

        densify = ir.BlockMatrixDensify(read)

        pow_ir = (construct_expr(ir.Ref('l'), hl.tfloat64)**construct_expr(
            ir.Ref('r'), hl.tfloat64))._ir
        squared_bm = ir.BlockMatrixMap2(scalar_to_bm, scalar_to_bm, 'l', 'r',
                                        pow_ir, "NeedsDense")
        slice_bm = ir.BlockMatrixSlice(
            matmul, [slice(0, 2, 1), slice(0, 1, 1)])

        return [
            read, persisted, add_two_bms, negate_bm, sqrt_bm, scalar_to_bm,
            col_vector_to_bm, row_vector_to_bm, broadcast_scalar,
            broadcast_col, broadcast_row, squared_bm, transpose, sparsify1,
            sparsify2, sparsify3, densify, matmul, slice_bm
        ]
Beispiel #2
0
    def blockmatrix_irs(self):
        scalar_ir = ir.F64(2)
        vector_ir = ir.MakeArray([ir.F64(3), ir.F64(2)],
                                 hl.tarray(hl.tfloat64))

        read = ir.BlockMatrixRead(
            ir.BlockMatrixNativeReader(resource('blockmatrix_example/0')))
        add_two_bms = ir.BlockMatrixMap2(
            read, read, 'l', 'r',
            ir.ApplyBinaryPrimOp('+', ir.Ref('l'), ir.Ref('r')))
        negate_bm = ir.BlockMatrixMap(
            read, 'element', ir.ApplyUnaryPrimOp('-', ir.Ref('element')))
        sqrt_bm = ir.BlockMatrixMap(
            read, 'element',
            hl.sqrt(construct_expr(ir.Ref('element'), hl.tfloat64))._ir)

        scalar_to_bm = ir.ValueToBlockMatrix(scalar_ir, [1, 1], 1)
        col_vector_to_bm = ir.ValueToBlockMatrix(vector_ir, [2, 1], 1)
        row_vector_to_bm = ir.ValueToBlockMatrix(vector_ir, [1, 2], 1)
        broadcast_scalar = ir.BlockMatrixBroadcast(scalar_to_bm, [], [2, 2],
                                                   256)
        broadcast_col = ir.BlockMatrixBroadcast(col_vector_to_bm, [0], [2, 2],
                                                256)
        broadcast_row = ir.BlockMatrixBroadcast(row_vector_to_bm, [1], [2, 2],
                                                256)
        transpose = ir.BlockMatrixBroadcast(broadcast_scalar, [1, 0], [2, 2],
                                            256)
        matmul = ir.BlockMatrixDot(broadcast_scalar, transpose)

        pow_ir = (construct_expr(ir.Ref('l'), hl.tfloat64)**construct_expr(
            ir.Ref('r'), hl.tfloat64))._ir
        squared_bm = ir.BlockMatrixMap2(scalar_to_bm, scalar_to_bm, 'l', 'r',
                                        pow_ir)
        slice_bm = ir.BlockMatrixSlice(
            matmul, [slice(0, 2, 1), slice(0, 1, 1)])

        return [
            read, add_two_bms, negate_bm, sqrt_bm, scalar_to_bm,
            col_vector_to_bm, row_vector_to_bm, broadcast_scalar,
            broadcast_col, broadcast_row, squared_bm, transpose, matmul,
            slice_bm
        ]
Beispiel #3
0
    def block_matrix_irs(self):
        scalar_ir = ir.F64(2)
        vector_ir = ir.MakeArray([ir.F64(3), ir.F64(2)], hl.tarray(hl.tfloat64))

        read = ir.BlockMatrixRead(resource('blockmatrix_example/0'))
        add_two_bms = BlockMatrixIRTests._make_element_wise_op_ir(read, read, '+')

        scalar_to_bm = ir.ValueToBlockMatrix(scalar_ir, [], 1, [])
        vector_to_bm = ir.ValueToBlockMatrix(vector_ir, [2], 1, [False])
        broadcast_scalar = ir.BlockMatrixBroadcast(scalar_to_bm, "scalar", [2, 2], 256, [False, False])
        broadcast_col = ir.BlockMatrixBroadcast(vector_to_bm, "col", [2, 2], 256, [False, False])
        broadcast_row = ir.BlockMatrixBroadcast(vector_to_bm, "row", [2, 2], 256, [False, False])

        return [
            read,
            add_two_bms,
            scalar_to_bm,
            vector_to_bm,
            broadcast_scalar,
            broadcast_col,
            broadcast_row,
        ]
Beispiel #4
0
    def value_irs(self):
        b = ir.TrueIR()
        c = ir.Ref('c')
        i = ir.I32(5)
        j = ir.I32(7)
        st = ir.Str('Hail')
        a = ir.Ref('a')
        aa = ir.Ref('aa')
        da = ir.Ref('da')
        nd = ir.Ref('nd')
        v = ir.Ref('v')
        s = ir.Ref('s')
        t = ir.Ref('t')
        call = ir.Ref('call')

        table = ir.TableRange(5, 3)

        matrix_read = ir.MatrixRead(
            ir.MatrixNativeReader(
                resource('backward_compatability/1.0.0/matrix_table/0.hmt'),
                None, False), False, False)

        block_matrix_read = ir.BlockMatrixRead(
            ir.BlockMatrixNativeReader('fake_file_path'))

        value_irs = [
            i,
            ir.I64(5),
            ir.F32(3.14),
            ir.F64(3.14), s,
            ir.TrueIR(),
            ir.FalseIR(),
            ir.Void(),
            ir.Cast(i, hl.tfloat64),
            ir.NA(hl.tint32),
            ir.IsNA(i),
            ir.If(b, i, j),
            ir.Coalesce(i, j),
            ir.Let('v', i, v),
            ir.Ref('x'),
            ir.ApplyBinaryPrimOp('+', i, j),
            ir.ApplyUnaryPrimOp('-', i),
            ir.ApplyComparisonOp('EQ', i, j),
            ir.MakeArray([i, ir.NA(hl.tint32), ir.I32(-3)],
                         hl.tarray(hl.tint32)),
            ir.ArrayRef(a, i, ir.Str('foo')),
            ir.ArrayLen(a),
            ir.ArrayRange(ir.I32(0), ir.I32(5), ir.I32(1)),
            ir.ArraySort(a, 'l', 'r',
                         ir.ApplyComparisonOp("LT", ir.Ref('l'), ir.Ref('r'))),
            ir.ToSet(a),
            ir.ToDict(da),
            ir.ToArray(a),
            ir.MakeNDArray(
                ir.MakeArray([ir.F64(-1.0), ir.F64(1.0)],
                             hl.tarray(hl.tfloat64)),
                ir.MakeTuple([ir.I64(1), ir.I64(2)]), ir.TrueIR()),
            ir.NDArrayShape(nd),
            ir.NDArrayReshape(nd, ir.MakeTuple([ir.I64(5)])),
            ir.NDArrayRef(nd, [ir.I64(1), ir.I64(2)]),
            ir.NDArrayMap(nd, 'v', v),
            ir.NDArrayMatMul(nd, nd),
            ir.LowerBoundOnOrderedCollection(a, i, True),
            ir.GroupByKey(da),
            ir.ArrayMap(a, 'v', v),
            ir.ArrayZip([a, a], ['a', 'b'], ir.TrueIR(), 'ExtendNA'),
            ir.ArrayFilter(a, 'v', v),
            ir.ArrayFlatMap(aa, 'v', v),
            ir.ArrayFold(a, ir.I32(0), 'x', 'v', v),
            ir.ArrayScan(a, ir.I32(0), 'x', 'v', v),
            ir.ArrayLeftJoinDistinct(a, a, 'l', 'r', ir.I32(0), ir.I32(1)),
            ir.ArrayFor(a, 'v', ir.Void()),
            ir.AggFilter(ir.TrueIR(), ir.I32(0), False),
            ir.AggExplode(ir.ArrayRange(ir.I32(0), ir.I32(2), ir.I32(1)), 'x',
                          ir.I32(0), False),
            ir.AggGroupBy(ir.TrueIR(), ir.I32(0), False),
            ir.AggArrayPerElement(
                ir.ArrayRange(ir.I32(0), ir.I32(2), ir.I32(1)), 'x', 'y',
                ir.I32(0), False),
            ir.ApplyAggOp('Collect', [], [ir.I32(0)]),
            ir.ApplyScanOp('Collect', [], [ir.I32(0)]),
            ir.ApplyAggOp('CallStats', [ir.I32(2)], [call]),
            ir.ApplyAggOp('TakeBy', [ir.I32(10)],
                          [ir.F64(-2.11), ir.F64(-2.11)]),
            ir.Begin([ir.Void()]),
            ir.MakeStruct([('x', i)]),
            ir.SelectFields(s, ['x', 'z']),
            ir.InsertFields(s, [('x', i)], None),
            ir.GetField(s, 'x'),
            ir.MakeTuple([i, b]),
            ir.GetTupleElement(t, 1),
            ir.Die(ir.Str('mumblefoo'), hl.tfloat64),
            ir.Apply('&&', hl.tbool, b, c),
            ir.Apply('toFloat64', hl.tfloat64, i),
            ir.Literal(hl.tarray(hl.tint32), [1, 2, None]),
            ir.TableCount(table),
            ir.TableGetGlobals(table),
            ir.TableCollect(ir.TableKeyBy(table, [], False)),
            ir.TableToValueApply(table, {'name': 'ForceCountTable'}),
            ir.MatrixToValueApply(matrix_read,
                                  {'name': 'ForceCountMatrixTable'}),
            ir.TableAggregate(
                table,
                ir.MakeStruct([('foo', ir.ApplyAggOp('Collect', [],
                                                     [ir.I32(0)]))])),
            ir.TableWrite(
                table,
                ir.TableNativeWriter(new_temp_file(), False, True,
                                     "fake_codec_spec$$")),
            ir.TableWrite(
                table, ir.TableTextWriter(new_temp_file(), None, True, 0,
                                          ",")),
            ir.MatrixAggregate(
                matrix_read,
                ir.MakeStruct([('foo', ir.ApplyAggOp('Collect', [],
                                                     [ir.I32(0)]))])),
            ir.MatrixWrite(
                matrix_read,
                ir.MatrixNativeWriter(new_temp_file(), False, False, "", None,
                                      None)),
            ir.MatrixWrite(
                matrix_read,
                ir.MatrixNativeWriter(
                    new_temp_file(), False, False, "",
                    '[{"start":{"row_idx":0},"end":{"row_idx": 10},"includeStart":true,"includeEnd":false}]',
                    hl.dtype('array<interval<struct{row_idx:int32}>>'))),
            ir.MatrixWrite(
                matrix_read,
                ir.MatrixVCFWriter(new_temp_file(), None, False, None)),
            ir.MatrixWrite(matrix_read, ir.MatrixGENWriter(new_temp_file(),
                                                           4)),
            ir.MatrixWrite(matrix_read, ir.MatrixPLINKWriter(new_temp_file())),
            ir.MatrixMultiWrite([matrix_read, matrix_read],
                                ir.MatrixNativeMultiWriter(
                                    new_temp_file(), False, False)),
            ir.BlockMatrixWrite(
                block_matrix_read,
                ir.BlockMatrixNativeWriter('fake_file_path', False, False,
                                           False)),
            ir.LiftMeOut(ir.I32(1))
        ]

        return value_irs
Beispiel #5
0
def _to_expr(e, dtype):
    if e is None:
        return None
    elif isinstance(e, Expression):
        if e.dtype != dtype:
            assert is_numeric(dtype), 'expected {}, got {}'.format(
                dtype, e.dtype)
            if dtype == tfloat64:
                return hl.float64(e)
            elif dtype == tfloat32:
                return hl.float32(e)
            elif dtype == tint64:
                return hl.int64(e)
            else:
                assert dtype == tint32
                return hl.int32(e)
        return e
    elif not is_compound(dtype):
        # these are not container types and cannot contain expressions if we got here
        return e
    elif isinstance(dtype, tstruct):
        new_fields = []
        found_expr = False
        for f, t in dtype.items():
            value = _to_expr(e[f], t)
            found_expr = found_expr or isinstance(value, Expression)
            new_fields.append(value)

        if not found_expr:
            return e
        else:
            exprs = [
                new_fields[i] if isinstance(new_fields[i], Expression) else
                hl.literal(new_fields[i], dtype[i])
                for i in range(len(new_fields))
            ]
            fields = {name: expr for name, expr in zip(dtype.keys(), exprs)}
            from .typed_expressions import StructExpression
            return StructExpression._from_fields(fields)

    elif isinstance(dtype, tarray):
        elements = []
        found_expr = False
        for element in e:
            value = _to_expr(element, dtype.element_type)
            found_expr = found_expr or isinstance(value, Expression)
            elements.append(value)
        if not found_expr:
            return e
        else:
            assert len(elements) > 0
            exprs = [
                element if isinstance(element, Expression) else hl.literal(
                    element, dtype.element_type) for element in elements
            ]
            indices, aggregations = unify_all(*exprs)
        x = ir.MakeArray([e._ir for e in exprs], None)
        return expressions.construct_expr(x, dtype, indices, aggregations)
    elif isinstance(dtype, tset):
        elements = []
        found_expr = False
        for element in e:
            value = _to_expr(element, dtype.element_type)
            found_expr = found_expr or isinstance(value, Expression)
            elements.append(value)
        if not found_expr:
            return e
        else:
            assert len(elements) > 0
            exprs = [
                element if isinstance(element, Expression) else hl.literal(
                    element, dtype.element_type) for element in elements
            ]
            indices, aggregations = unify_all(*exprs)
            x = ir.ToSet(
                ir.ToStream(ir.MakeArray([e._ir for e in exprs], None)))
            return expressions.construct_expr(x, dtype, indices, aggregations)
    elif isinstance(dtype, ttuple):
        elements = []
        found_expr = False
        assert len(e) == len(dtype.types)
        for i in range(len(e)):
            value = _to_expr(e[i], dtype.types[i])
            found_expr = found_expr or isinstance(value, Expression)
            elements.append(value)
        if not found_expr:
            return e
        else:
            exprs = [
                elements[i] if isinstance(elements[i], Expression) else
                hl.literal(elements[i], dtype.types[i])
                for i in range(len(elements))
            ]
            indices, aggregations = unify_all(*exprs)
            x = ir.MakeTuple([expr._ir for expr in exprs])
            return expressions.construct_expr(x, dtype, indices, aggregations)
    elif isinstance(dtype, tdict):
        keys = []
        values = []
        found_expr = False
        for k, v in e.items():
            k_ = _to_expr(k, dtype.key_type)
            v_ = _to_expr(v, dtype.value_type)
            found_expr = found_expr or isinstance(k_, Expression)
            found_expr = found_expr or isinstance(v_, Expression)
            keys.append(k_)
            values.append(v_)
        if not found_expr:
            return e
        else:
            assert len(keys) > 0
            # Here I use `to_expr` to call `lit` the keys and values separately.
            # I anticipate a common mode is statically-known keys and Expression
            # values.
            key_array = to_expr(keys, tarray(dtype.key_type))
            value_array = to_expr(values, tarray(dtype.value_type))
            return hl.dict(hl.zip(key_array, value_array))
    elif isinstance(dtype, hl.tndarray):
        return hl.nd.array(e)
    else:
        raise NotImplementedError(dtype)
Beispiel #6
0
    def value_irs(self):
        b = ir.TrueIR()
        c = ir.Ref('c')
        i = ir.I32(5)
        j = ir.I32(7)
        st = ir.Str('Hail')
        a = ir.Ref('a')
        aa = ir.Ref('aa')
        da = ir.Ref('da')
        v = ir.Ref('v')
        s = ir.Ref('s')
        t = ir.Ref('t')
        call = ir.Ref('call')

        table = ir.TableRange(5, 3)

        matrix_read = ir.MatrixRead(ir.MatrixNativeReader(
            resource('backward_compatability/1.0.0/matrix_table/0.hmt')), False, False)

        value_irs = [
            i, ir.I64(5), ir.F32(3.14), ir.F64(3.14), s, ir.TrueIR(), ir.FalseIR(), ir.Void(),
            ir.Cast(i, hl.tfloat64),
            ir.NA(hl.tint32),
            ir.IsNA(i),
            ir.If(b, i, j),
            ir.Let('v', i, v),
            ir.Ref('x'),
            ir.ApplyBinaryOp('+', i, j),
            ir.ApplyUnaryOp('-', i),
            ir.ApplyComparisonOp('EQ', i, j),
            ir.MakeArray([i, ir.NA(hl.tint32), ir.I32(-3)], hl.tarray(hl.tint32)),
            ir.ArrayRef(a, i),
            ir.ArrayLen(a),
            ir.ArrayRange(ir.I32(0), ir.I32(5), ir.I32(1)),
            ir.ArraySort(a, b, False),
            ir.ToSet(a),
            ir.ToDict(da),
            ir.ToArray(a),
            ir.LowerBoundOnOrderedCollection(a, i, True),
            ir.GroupByKey(da),
            ir.ArrayMap(a, 'v', v),
            ir.ArrayFilter(a, 'v', v),
            ir.ArrayFlatMap(aa, 'v', v),
            ir.ArrayFold(a, ir.I32(0), 'x', 'v', v),
            ir.ArrayScan(a, ir.I32(0), 'x', 'v', v),
            ir.ArrayFor(a, 'v', ir.Void()),
            ir.AggFilter(ir.TrueIR(), ir.I32(0)),
            ir.AggExplode(ir.ArrayRange(ir.I32(0), ir.I32(2), ir.I32(1)), 'x', ir.I32(0)),
            ir.AggGroupBy(ir.TrueIR(), ir.I32(0)),
            ir.ApplyAggOp('Collect', [], None, [ir.I32(0)]),
            ir.ApplyScanOp('Collect', [], None, [ir.I32(0)]),
            ir.ApplyAggOp('Histogram', [ir.F64(-5.0), ir.F64(5.0), ir.I32(100)], None, [ir.F64(-2.11)]),
            ir.ApplyAggOp('CallStats', [], [ir.I32(2)], [call]),
            ir.ApplyAggOp('TakeBy', [ir.I32(10)], None, [ir.F64(-2.11), ir.F64(-2.11)]),
            ir.Begin([ir.Void()]),
            ir.MakeStruct([('x', i)]),
            ir.SelectFields(s, ['x', 'z']),
            ir.InsertFields(s, [('x', i)]),
            ir.GetField(s, 'x'),
            ir.MakeTuple([i, b]),
            ir.GetTupleElement(t, 1),
            ir.StringSlice(st, ir.I32(1), ir.I32(2)),
            ir.StringLength(st),
            ir.In(2, hl.tfloat64),
            ir.Die(ir.Str('mumblefoo'), hl.tfloat64),
            ir.Apply('&&', b, c),
            ir.Apply('toFloat64', i),
            ir.Uniroot('x', ir.F64(3.14), ir.F64(-5.0), ir.F64(5.0)),
            ir.Literal(hl.tarray(hl.tint32), [1, 2, None]),
            ir.TableCount(table),
            ir.TableGetGlobals(table),
            ir.TableCollect(table),
            ir.TableAggregate(table, ir.MakeStruct([('foo', ir.ApplyAggOp('Collect', [], None, [ir.I32(0)]))])),
            ir.TableWrite(table, new_temp_file(), False, True, "fake_codec_spec$$"),
            ir.MatrixAggregate(matrix_read, ir.MakeStruct([('foo', ir.ApplyAggOp('Collect', [], None, [ir.I32(0)]))])),
            ir.MatrixWrite(matrix_read, ir.MatrixNativeWriter(new_temp_file(), False, False, "")),
            ir.MatrixWrite(matrix_read, ir.MatrixVCFWriter(new_temp_file(), None, False, None)),
            ir.MatrixWrite(matrix_read, ir.MatrixGENWriter(new_temp_file(), 4)),
            ir.MatrixWrite(matrix_read, ir.MatrixPLINKWriter(new_temp_file())),
        ]

        return value_irs
Beispiel #7
0
    def value_irs(self):
        b = ir.TrueIR()
        c = ir.Ref('c')
        i = ir.I32(5)
        j = ir.I32(7)
        st = ir.Str('Hail')
        a = ir.Ref('a')
        aa = ir.Ref('aa')
        da = ir.Ref('da')
        v = ir.Ref('v')
        s = ir.Ref('s')
        t = ir.Ref('t')
        call = ir.Ref('call')

        collect_sig = ir.AggSignature('Collect', [], None, [hl.tint32])

        call_stats_sig = ir.AggSignature('CallStats', [], [hl.tint32], [hl.tcall])
        call_stats_type = hl.tstruct(AC=hl.tarray(hl.tint32),
                                     AF=hl.tarray(hl.tfloat64),
                                     AN=hl.tint32,
                                     homozygote_count=hl.tarray(hl.tint32))

        hist_sig = ir.AggSignature(
            'Histogram', [hl.tfloat64, hl.tfloat64, hl.tint32], None, [hl.tfloat64])
        hist_type = hl.tstruct(bin_edges=hl.tarray(hl.tfloat64),
                               bin_freq=hl.tarray(hl.tint64),
                               n_smaller=hl.tint64,
                               n_larger=hl.tint64)

        take_by_sig = ir.AggSignature('TakeBy', [hl.tint32], None, [hl.tfloat64, hl.tfloat64])
        take_by_type = hl.tarray(hl.tfloat64)

        value_irs = [
            i, ir.I64(5), ir.F32(3.14), ir.F64(3.14), s, ir.TrueIR(), ir.FalseIR(), ir.Void(),
            ir.Cast(i, hl.tfloat64),
            ir.NA(hl.tint32),
            ir.IsNA(i),
            ir.If(b, i, j),
            ir.Let('v', i, v),
            ir.Ref('x'),
            ir.ApplyBinaryOp('+', i, j),
            ir.ApplyUnaryOp('-', i),
            ir.ApplyComparisonOp('EQ', i, j),
            ir.MakeArray([i, ir.NA(hl.tint32), ir.I32(-3)], hl.tarray(hl.tint32)),
            ir.ArrayRef(a, i),
            ir.ArrayLen(a),
            ir.ArrayRange(ir.I32(0), ir.I32(5), ir.I32(1)),
            ir.ArraySort(a, b, False),
            ir.ToSet(a),
            ir.ToDict(da),
            ir.ToArray(a),
            ir.LowerBoundOnOrderedCollection(a, i, True),
            ir.GroupByKey(da),
            ir.ArrayMap(a, 'v', v),
            ir.ArrayFilter(a, 'v', v),
            ir.ArrayFlatMap(aa, 'v', v),
            ir.ArrayFold(a, ir.I32(0), 'x', 'v', v),
            ir.ArrayScan(a, ir.I32(0), 'x', 'v', v),
            ir.ArrayFor(a, 'v', ir.Void()),
            ir.AggFilter(ir.TrueIR(), ir.I32(0)),
            ir.AggExplode(ir.ArrayRange(ir.I32(0), ir.I32(2), ir.I32(1)), 'x', ir.I32(0)),
            ir.AggGroupBy(ir.TrueIR(), ir.I32(0)),
            ir.ApplyAggOp([], None, [ir.I32(0)], collect_sig),
            ir.ApplyScanOp([], None, [ir.I32(0)], collect_sig),
            ir.ApplyAggOp([ir.F64(-5.0), ir.F64(5.0), ir.I32(100)], None, [ir.F64(-2.11)], hist_sig),
            ir.ApplyAggOp([], [ir.I32(2)], [call], call_stats_sig),
            ir.ApplyAggOp([ir.I32(10)], None, [ir.F64(-2.11), ir.F64(-2.11)], take_by_sig),
            ir.InitOp(ir.I32(0), [ir.I32(2)], call_stats_sig),
            ir.SeqOp(ir.I32(0), [i], collect_sig),
            ir.SeqOp(ir.I32(0), [ir.F64(-2.11), ir.I32(17)], take_by_sig),
            ir.Begin([ir.Void()]),
            ir.MakeStruct([('x', i)]),
            ir.SelectFields(s, ['x', 'z']),
            ir.InsertFields(s, [('x', i)]),
            ir.GetField(s, 'x'),
            ir.MakeTuple([i, b]),
            ir.GetTupleElement(t, 1),
            ir.StringSlice(st, ir.I32(1), ir.I32(2)),
            ir.StringLength(st),
            ir.In(2, hl.tfloat64),
            ir.Die('mumblefoo', hl.tfloat64),
            ir.Apply('&&', b, c),
            ir.Apply('toFloat64', i),
            ir.Uniroot('x', ir.F64(3.14), ir.F64(-5.0), ir.F64(5.0)),
            ir.Literal(hl.tarray(hl.tint32), [1, 2, None]),
        ]

        return value_irs
Beispiel #8
0
    def value_irs(self):
        b = ir.TrueIR()
        c = ir.Ref('c', hl.tbool)
        i = ir.I32(5)
        j = ir.I32(7)
        st = ir.Str('Hail')
        a = ir.Ref('a', hl.tarray(hl.tint32))
        aa = ir.Ref('aa', hl.tarray(hl.tarray(hl.tint32)))
        da = ir.Ref('da', hl.tarray(hl.ttuple(hl.tint32, hl.tstr)))
        v = ir.Ref('v', hl.tint32)
        s = ir.Ref('s', hl.tstruct(x=hl.tint32, y=hl.tint64, z=hl.tfloat64))
        t = ir.Ref('t', hl.ttuple(hl.tint32, hl.tint64, hl.tfloat64))
        call = ir.Ref('call', hl.tcall)

        collect_sig = ir.AggSignature('Collect', [], None, [hl.tint32])

        call_stats_sig = ir.AggSignature('CallStats', [], [hl.tint32],
                                         [hl.tcall])

        hist_sig = ir.AggSignature('Histogram',
                                   [hl.tfloat64, hl.tfloat64, hl.tint32], None,
                                   [hl.tfloat64])

        take_by_sig = ir.AggSignature('TakeBy', [hl.tint32], None,
                                      [hl.tfloat64, hl.tfloat64])

        value_irs = [
            i,
            ir.I64(5),
            ir.F32(3.14),
            ir.F64(3.14), s,
            ir.TrueIR(),
            ir.FalseIR(),
            ir.Void(),
            ir.Cast(i, hl.tfloat64),
            ir.NA(hl.tint32),
            ir.IsNA(i),
            ir.If(b, i, j),
            ir.Let('v', i, v),
            ir.Ref('x', hl.tint32),
            ir.ApplyBinaryOp('+', i, j),
            ir.ApplyUnaryOp('-', i),
            ir.ApplyComparisonOp('EQ', i, j),
            ir.MakeArray([i, ir.NA(hl.tint32), ir.I32(-3)],
                         hl.tarray(hl.tint32)),
            ir.ArrayRef(a, i),
            ir.ArrayLen(a),
            ir.ArrayRange(ir.I32(0), ir.I32(5), ir.I32(1)),
            ir.ArraySort(a, b, False),
            ir.ToSet(a),
            ir.ToDict(da),
            ir.ToArray(a),
            ir.LowerBoundOnOrderedCollection(a, i, True),
            ir.GroupByKey(da),
            ir.ArrayMap(a, 'v', v),
            ir.ArrayFilter(a, 'v', v),
            ir.ArrayFlatMap(aa, 'v', v),
            ir.ArrayFold(a, ir.I32(0), 'x', 'v', v),
            ir.ArrayFor(a, 'v', ir.Void()),
            ir.ApplyAggOp(ir.I32(0), [], None, collect_sig),
            ir.ApplyScanOp(ir.I32(0), [], None, collect_sig),
            ir.ApplyAggOp(ir.F64(-2.11),
                          [ir.F64(-5.0),
                           ir.F64(5.0), ir.I32(100)], None, hist_sig),
            ir.ApplyAggOp(call, [], [ir.I32(2)], call_stats_sig),
            ir.ApplyAggOp(ir.F64(-2.11), [ir.I32(10)], None, take_by_sig),
            ir.InitOp(ir.I32(0), [ir.I32(2)], call_stats_sig),
            ir.SeqOp(ir.I32(0), [i], collect_sig),
            ir.SeqOp(ir.I32(0), [ir.F64(-2.11), ir.I32(17)], take_by_sig),
            ir.Begin([ir.Void()]),
            ir.MakeStruct([('x', i)]),
            ir.SelectFields(s, ['x', 'z']),
            ir.InsertFields(s, [('x', i)]),
            ir.GetField(s, 'x'),
            ir.MakeTuple([i, b]),
            ir.GetTupleElement(t, 1),
            ir.StringSlice(st, ir.I32(1), ir.I32(2)),
            ir.StringLength(st),
            ir.In(2, hl.tfloat64),
            ir.Die('mumblefoo', hl.tfloat64),
            ir.Apply('&&', b, c),
            ir.Apply('toFloat64', i),
            ir.Apply('isDefined', s),
            ir.Uniroot('x', ir.F64(3.14), ir.F64(-5.0), ir.F64(5.0))
        ]

        return value_irs