Beispiel #1
0
from hare import Hare, Conversation
from hare.tensorflowbrain import BiGruBrain

mockhare = Hare()
mockhare.brain = BiGruBrain()

for i in range(10000):
    convo = Conversation()
    convo.add_utterance(speaker='a', content='c c c c c')
    convo.add_utterance(speaker='b', content='c c c c c')
    convo.add_utterance(speaker='b', content='c c c c b')
    convo.add_utterance(speaker='a', content='c c c c a')
    convo.label_speaker('b', 1)

    mockhare.add_conversation(convo)

mockhare.train()
mockhare.visualize_history_for_conversation()
Beispiel #2
0
from hare import Hare, Conversation
from hare.brain import BiGruBrain

brain: BiGruBrain = BiGruBrain()
brain.embedding_location = '/vol/bigdata/word_embeddings/glove/glove.6B.50d.txt'
brain.verbose = True

hare = Hare()
hare.brain = brain

convo = Conversation()
convo.add_utterance(speaker='a', content='hate you')
convo.add_utterance(speaker='b', content='i love you')
convo.label_speaker('a', 1)

hare.add_conversation(convo)

hare.train()
hare.save('/vol/tensusers2/wstoop/HaRe/hare/pretrained/simple')

hare.update_status_history_for_conversation()
hare.visualize_history_for_conversation()
        conversations.append(current_conversation)
        current_conversation = Conversation()

        if len(conversations) % 100 == 0:
            print(len(conversations))

        continue

    speaker, content = line.split('\t')
    current_conversation.add_utterance(speaker, content)

#Add the conversations to hare
print('Adding conversations')
for conversation in conversations:
    for h in hares:
        h.add_conversation(conversation)

#Visualize the result
print('Making precision visualization')
visualize_precision_during_conversations(hares,
                                         save_with_filename='precision.png')

print('Making recall visualization')
visualize_recall_during_conversations(hares, save_with_filename='recall.png')

print('Making fscore visualization')
visualize_fscore_during_conversations(hares, save_with_filename='fscore.png')

print('Making AUC visualization')
visualize_auc_during_conversations(hares, save_with_filename='auc.png')
from sys import argv

from hare import Hare
from hare.brain import DictBasedBrain
from hare.conversation import import_conversations

THRESHOLDS = [0.01, 0.025, 0.05, 0.075, 0.1, 0.25, 0.5, 0.75]
CONVERSATIONS_FILE = '../datasets/LoL/heldout_conversations_anon.txt'
NR_OF_CONVERSATIONS = 1000

print('Importing conversations')
conversations = import_conversations(CONVERSATIONS_FILE)[:NR_OF_CONVERSATIONS]

print('Loading pretrained model')

exp_hare = Hare(name='dict_based')
exp_hare.brain = DictBasedBrain()
exp_hare.brain.bad_words = [
    'f**k', 'fck', 'fuk', 'shit', 'stfu', 'wtf', 'suck', 'noob', 'newb',
    'n00b', 'f*g', 'loser'
]

result_file = open('moba_dic', 'w')

for n, conversation in enumerate(conversations):

    print('Processing conv', n)
    exp_hare.add_conversation(conversation)
    exp_hare.save_history_for_conversation(result_file, n)
Beispiel #5
0
    elif line[0] == '#':
        try:
            current_conversation.label_speaker(line.split()[1], 1)
        except IndexError:
            continue

        conversations.append(current_conversation)
        current_conversation = Conversation()

        if len(conversations) % 100 == 0:
            print(len(conversations))

        if len(conversations) == NR_OF_CONVERSATIONS:
            break

        continue

    speaker, content = line.split('\t')
    current_conversation.add_utterance(speaker, content)

#Add to a hare object
moba_hare = Hare()
for conversation in conversations:
    moba_hare.add_conversation(conversation)

moba_hare.brain = BiGruBrain()
moba_hare.brain.downsampling = True
moba_hare.brain._max_sequence_length = 500

moba_hare.train()
moba_hare.save('moba')
Beispiel #6
0
from hare import Hare, Conversation
from hare.brain import RandomBrain

random_hare = Hare()
random_hare.brain = RandomBrain()

convo = Conversation()
random_hare.add_conversation(convo)

convo.add_utterance(speaker='a', content='hello')
convo.add_utterance(speaker='b', content='hello')
convo.add_utterance(speaker='a', content='how is everyone doing?')

random_hare.update_status_history_for_conversation(0)
print(random_hare.status_per_conversation[0])

convo.label_speaker('b', 0.9)
acc = random_hare.calculate_retrospective_accuracy()

print(acc)