Beispiel #1
0
def test_UL():
    # Signal definition
    sig = harp.HARPix().add_iso(16)
    sig.add_func(lambda d: np.exp(-d**2 / 2 / 20**2),
                 mode='dist',
                 center=(0, 0))

    # Background definition
    bg = harp.zeros_like(sig)
    bg.add_func(lambda l, b: 0. / (b**2 + 1.)**0.5 + 1.0)

    fluxes, noise, systematics, exposure = get_model_input(
        [sig], bg, [dict(err=bg * 0.1, sigmas=[
            20.,
        ], Sigma=None, nside=16)], bg * 100.)
    m = Swordfish(fluxes, noise, systematics, exposure, solver='cg')

    I = m.fishermatrix()
    print I

    ec = EffectiveCounts(m)
    UL = ec.upperlimit(0.05, 0)
    ULg = ec.upperlimit(0.05, 0, gaussian=True)
    s, b = ec.effectivecounts(0, 1.0)

    print "Total signal counts (theta = 1):", ec.counts(0, 1.0)
    print "Eff.  signal counts (theta = 1):", s
    print "Eff.  bkg counts (theta = 1)   :", b
    print "Upper limit on theta           :", UL
    print "Upper limit on theta (gaussian):", ULg
Beispiel #2
0
def test_covariance():
    nside = 8

    # Signal definition
    sig = harp.HARPix().add_iso(nside).add_singularity((50, 50), .1, 50, n=100)
    sig.add_func(lambda d: np.exp(-d**2 / 2 / 20**2),
                 mode='dist',
                 center=(0, 0))
    sig.mul_sr()

    # Covariance matrix definition
    cov = HARPix_Sigma(sig)
    bg = sig * .0
    bg.data += 1
    cov.add_systematics(err=bg * 0.1, sigmas=[
        20.,
    ], Sigma=None, nside=nside)

    x = np.zeros_like(sig.data)
    x[901] = 1.
    y = cov.dot(x)
    sig.data = y
    sig.div_sr()
    z = sig.get_healpix(128)
    hp.mollview(z, nest=True)
    plt.savefig('test.eps')
Beispiel #3
0
def test_MW_dSph():
    nside = 32

    def plot_harp(h, filename):
        m = h.get_healpix(128)
        vmax = np.log10(m).max()
        vmin = vmax - 2
        hp.mollview(np.log10(m), nest=True, min=vmin, max=vmax)
        plt.savefig(filename)

    dims = ()

    # Signal definition
    spec = 1.
    MW = harp.HARPix(dims=dims).add_iso(2).add_singularity((0, 0),
                                                           0.1,
                                                           2.,
                                                           n=10)
    MW.add_func(lambda d: spec / (1 + d)**2, mode='dist', center=(0, 0))
    pos = (50, 40)
    #    dSph = harp.HARPix(dims = dims).add_singularity(pos, 0.1, 20, n = 10)
    #    dSph.add_func(lambda d: 0.1*spec/(.1+d)**2, mode = 'dist', center=pos)
    sig = MW  #+ dSph
    sig.data += .001  # EGBG
    plot_harp(sig, 'sig.eps')

    # Background definition
    bg = harp.HARPix(dims=dims).add_iso(64)
    bg.add_func(lambda l, b: 1 / (b + 1)**2)
    plot_harp(bg, 'bg.eps')

    # Covariance matrix definition
    cov = harpix_Sigma(sig)
    cov.add_systematics(err=bg * 0.1, sigma=10., Sigma=None, nside=0)

    # Set up swordfish
    fluxes = [sig.data.flatten()]
    noise = bg.get_formatted_like(sig).data.flatten()
    systematics = cov
    exposure = np.ones_like(noise) * 0.001
    m = sf.Swordfish(fluxes, noise, systematics, exposure, solver='direct')

    F = m.effectiveinfoflux(0)
    f = harp.HARPix.from_data(sig, F)
    plot_harp(f, 'test.eps')
Beispiel #4
0
def test_infoflux():
    sig = harp.HARPix().add_singularity((0, 0), .1, 50, n=100)
    sig.data += 1.
    bkg = sig

    fluxes, noise, systematics, exposure = get_model_input([sig], bkg, None,
                                                           1.)
    m = Swordfish(fluxes, noise, systematics, exposure)
    F = m.effectiveinfoflux(0)
    f = harp.HARPix.from_data(sig, F, div_sr=True)
    m = f.get_healpix(256)
    hp.mollview(m, nest=True)
    plt.savefig('test.eps')
Beispiel #5
0
def test_simple():
    def plot_harp(h, filename):
        m = h.get_healpix(128)
        hp.mollview(m, nest=True)
        plt.savefig(filename)

    dims = ()
    nside = 16

    # Signal definition
    spec = 1.
    sig = harp.HARPix(dims=dims).add_iso(nside).add_singularity((50, 50),
                                                                .1,
                                                                20,
                                                                n=100)
    sig.add_func(lambda d: np.exp(-d**2 / 2 / 20**2),
                 mode='dist',
                 center=(0, 0))
    sig.add_func(lambda d: 1 / (d + 1)**1, mode='dist', center=(50, 50))
    sig.data += 0.1  # EGBG
    plot_harp(sig, 'sig.eps')
    sig.mul_sr()

    # Background definition
    bg = harp.zeros_like(sig)
    bg.add_func(lambda l, b: 0. / (b**2 + 1.)**0.5 + 1.0)
    plot_harp(bg, 'bg.eps')
    bg.mul_sr()
    #bg.print_info()

    # Covariance matrix definition

    cov = HARPix_Sigma(sig)
    cov.add_systematics(err=bg * 0.1, sigmas=[
        20.,
    ], Sigma=None, nside=64)

    # Set up swordfish
    fluxes = [sig.data.flatten()]
    noise = bg.data.flatten()
    systematics = cov
    exposure = np.ones_like(noise) * 10000.
    m = Swordfish(fluxes, noise, systematics, exposure, solver='cg')

    F = m.effectiveinfoflux(0, thetas=[0.000], psi=1.)
    f = harp.HARPix.from_data(sig, F)
    f.div_sr()
    plot_harp(f, 'test.eps')
    quit()
Beispiel #6
0
def test():
    H = harp.HARPix().add_iso(4).add_disc((80, 00), 40, 16).add_disc((-80, 00),
                                                                     40, 16)
    H.data += 1.

    # Covariance matrix definition
    cov = harpix_Sigma(H)
    flat = harp.HARPix().add_iso(16, fill=1.)
    cov.add_systematics(err=flat * .1, sigma=3, Sigma=None, nside=128)

    # Set up swordfish
    fluxes = [H.get_data(mul_sr=True)]
    noise = fluxes[0]
    expmap = noise * 0. + 1e5
    systematics = cov
    m = sf.Swordfish(fluxes, noise, systematics, expmap, solver='cg')

    F = m.effectiveinfoflux(0)
    f = harp.HARPix.from_data(H, F, div_sr=True)
    print min(f.data), max(f.data)

    m = f.get_healpix(128)
    hp.mollview(m, nest=True)
    plt.savefig("MW.eps")
Beispiel #7
0
def get_Jmap():
    Interp_sig = get_los()
    #sig = harp.HARPix(dims=dims).add_singularity((0,0), 1, 20, n = 10)
    Jmap = harp.HARPix().add_iso(32).add_disc((0, 0), 20, 64)
    Jmap.add_func(lambda d: Interp_sig(d), mode='dist', center=(0, 0))
    return Jmap
Beispiel #8
0
def MW_dSph():
    nside = 32

    bg_hpx, exposure_hpx = get_BG()

    dims = ()

    J = get_Jmap()

    Jex = get_extragalactic()

    J = J + Jex

    # Signal definition
    spec = 1.
    dSph = harp.HARPix(dims=dims).add_iso(1, fill=1.)
    pos_list = [(50, 40), (-20, 30), (80, -80), (42, -15)]
    Jlist = [3e21, 3e21, 6e21, 2e21]
    for J0, pos in zip(Jlist, pos_list):
        dSph = dSph.add_singularity(pos, 0.1, 5, n=10)
        #dSph = harp.HARPix(dims = dims).add_disc(pos, 10, 62).add_disc((50,-40), 10, 32)
        dSph.add_func(lambda d: J0 / (.1 + d)**2, mode='dist', center=pos)
    sig = J + dSph
    #sig.data += 1e21 # EGBG
    plot_harp(sig, 'sig.eps', maxfac=1.0)

    # Background definition
    #bg = harp.HARPix(dims = dims).add_iso(64)
    bg = harp.HARPix.from_healpix(bg_hpx, nest=False)
    plot_harp(bg, 'bg.eps', maxfac=0.01)

    exposure = harp.HARPix.from_healpix(exposure_hpx, nest=False)

    # Covariance matrix definition
    cov = harpix_Sigma(sig)
    bg_flat = deepcopy(bg)
    bg_flat.data *= 0
    bg_flat.data += 1e-8
    #    cov.add_systematics(err = bg_flat*0.1, sigma =  .25, Sigma = None, nside =64)
    #    cov.add_systematics(err = bg_flat*0.1, sigma =  .5, Sigma = None, nside =16)
    #    cov.add_systematics(err = bg_flat*0.1, sigma =  1., Sigma = None, nside =16)
    #    cov.add_systematics(err = bg_flat*0.1, sigma =  2., Sigma = None, nside =64)
    #    cov.add_systematics(err = bg_flat*0.1, sigma =  3., Sigma = None, nside =64)
    #    cov.add_systematics(err = bg_flat*0.1, sigma =  4., Sigma = None, nside =64)
    #    cov.add_systematics(err = bg_flat*0.1, sigma =  7., Sigma = None, nside =64)
    cov.add_systematics(err=bg_flat * 0.1, sigma=10., Sigma=None, nside=64)
    cov.add_systematics(err=bg_flat * 0.3, sigma=1e10, Sigma=None, nside=8)
    cov.add_systematics(err=bg_flat * 0.1, sigma=20., Sigma=None, nside=64)
    #cov.add_systematics(err = bg_flat*0.1, sigma = 25., Sigma = None, nside = 1)
    #cov.add_systematics(err = bg_flat*0.1, sigma = 30., Sigma = None, nside = 1)
    #cov.add_systematics(err = bg_flat*0.1, sigma = 35., Sigma = None, nside = 1)
    #cov.add_systematics(err = bg_flat*0.1, sigma = 40., Sigma = None, nside = 1)

    # Set up swordfish
    fluxes = [sig.get_data(mul_sr=True)]
    noise = bg.get_formatted_like(sig).get_data(mul_sr=True)
    expmap = exposure.get_formatted_like(sig).get_data() * 1e-4
    systematics = cov
    #systematics = None
    m = sf.Swordfish(fluxes, noise, systematics, expmap, solver='cg')

    F = m.effectiveinfoflux(0)
    f = harp.HARPix.from_data(sig, F, div_sr=True)
    plot_harp(f, 'MW.eps', maxfac=0.1)
Beispiel #9
0
def test_3d():
    def plot_harp(h, filename, dims=()):
        m = h.get_healpix(128, idxs=dims)
        hp.mollview(m, nest=True)
        plt.savefig(filename)

    def plot_rock(h, filename):
        nside = 32
        N = h.dims[0]
        npix = hp.nside2npix(nside)
        rings = hp._pixelfunc.pix2ring(nside, np.arange(npix), nest=True)
        T = harp.get_trans_matrix(h, nside)
        data = harp.trans_data(T, h.data)
        out = []
        for r in range(1, 4 * nside):
            mask = rings == r
            out.append(data[mask].sum(axis=0))
        out = np.array(out)
        plt.imshow(out, aspect=0.8 * N / (4 * nside))
        plt.xlabel("Energy [AU]")
        plt.ylabel("Latitude [AU]")
        plt.savefig(filename)

    x = np.linspace(0, 10, 20)
    nside = 16

    dims = (len(x), )

    # Signal definition
    spec_sig = np.exp(-(x - 5)**2 / 2)
    sig = harp.HARPix(dims=dims).add_iso(nside).add_singularity((50, 50),
                                                                1,
                                                                20,
                                                                n=10)
    sig.add_func(lambda d: spec_sig * np.exp(-d**2 / 2 / 20**2),
                 mode='dist',
                 center=(0, 0))
    sig.add_func(lambda d: spec_sig / (d + 1)**1, mode='dist', center=(50, 50))
    sig.mul_sr()

    # Background definition
    bg = harp.zeros_like(sig)
    spec_bg = x * 0. + 1.
    bg.add_func(lambda l, b: spec_bg * (0. / (b**2 + 1.)**0.5 + 0.1))
    bg.mul_sr()

    # Covariance matrix definition
    cov = HARPix_Sigma(sig)
    corr = lambda x, y: np.exp(-(x - y)**2 / 2 / 3**2)
    Sigma = get_sigma(x, corr)
    cov.add_systematics(err=bg * 0.1, sigmas=[
        20.,
    ], Sigma=Sigma, nside=16)

    # Set up swordfish
    fluxes = [sig.data.flatten()]
    noise = bg.data.flatten()
    systematics = cov
    exposure = np.ones_like(noise) * 100.0
    m = Swordfish(fluxes, noise, systematics, exposure, solver='cg')

    F = m.effectiveinfoflux(0)
    f = harp.HARPix.from_data(sig, F)
    f.div_sr()
    plot_harp(f, 'test.eps', dims=(11, ))
    plot_rock(f, 'test2.eps')