Beispiel #1
0
def test_root_to_hdf_response(response):

    r = hawc_response_factory(response)

    test_filename = "response.hd5"

    # Make sure it doesn't exist yet, if it does,remove it
    if os.path.exists(test_filename):
        os.remove(test_filename)

    r.write(test_filename)

    # Try to open and use it
    r2 = hawc_response_factory(test_filename)

    check_responses(r, r2)

    os.remove(test_filename)
Beispiel #2
0
    def __init__(self, name, maptree, response_file, roi, flat_sky_pixels_size=0.17):

        # Store ROI
        self._roi = roi

        # Set up the flat-sky projection
        self._flat_sky_projection = roi.get_flat_sky_projection(flat_sky_pixels_size)

        # Read map tree (data)
        self._maptree = map_tree_factory(maptree, roi=roi)

        # Read detector response_file
        self._response = hawc_response_factory(response_file)

        # Use a renormalization of the background as nuisance parameter
        # NOTE: it is fixed to 1.0 unless the user explicitly sets it free (experimental)
        self._nuisance_parameters = collections.OrderedDict()
        self._nuisance_parameters['%s_bkg_renorm' % name] = Parameter('%s_bkg_renorm' % name, 1.0,
                                                                      min_value=0.5, max_value=1.5,
                                                                      delta=0.01,
                                                                      desc="Renormalization for background map",
                                                                      free=False,
                                                                      is_normalization=False)

        # Instance parent class

        super(HAL, self).__init__(name, self._nuisance_parameters)

        self._likelihood_model = None

        # These lists will contain the maps for the point sources
        self._convolved_point_sources = ConvolvedSourcesContainer()
        # and this one for extended sources
        self._convolved_ext_sources = ConvolvedSourcesContainer()

        # All energy/nHit bins are loaded in memory
        self._all_planes = list(self._maptree.analysis_bins_labels)

        # The active planes list always contains the list of *indexes* of the active planes
        self._active_planes = None

        # Set up the transformations from the flat-sky projection to Healpix, as well as the list of active pixels
        # (one for each energy/nHit bin). We make a separate transformation because different energy bins might have
        # different nsides
        self._active_pixels = collections.OrderedDict()
        self._flat_sky_to_healpix_transform = collections.OrderedDict()

        for bin_id in self._maptree:

            this_maptree = self._maptree[bin_id]
            this_nside = this_maptree.nside
            this_active_pixels = roi.active_pixels(this_nside)

            this_flat_sky_to_hpx_transform = FlatSkyToHealpixTransform(self._flat_sky_projection.wcs,
                                                                       'icrs',
                                                                       this_nside,
                                                                       this_active_pixels,
                                                                       (self._flat_sky_projection.npix_width,
                                                                        self._flat_sky_projection.npix_height),
                                                                       order='bilinear')

            self._active_pixels[bin_id] = this_active_pixels
            self._flat_sky_to_healpix_transform[bin_id] = this_flat_sky_to_hpx_transform

        # This will contain a list of PSF convolutors for extended sources, if there is any in the model

        self._psf_convolutors = None

        # Pre-compute the log-factorial factor in the likelihood, so we do not keep to computing it over and over
        # again.
        self._log_factorials = collections.OrderedDict()

        # We also apply a bias so that the numerical value of the log-likelihood stays small. This helps when
        # fitting with algorithms like MINUIT because the convergence criterium involves the difference between
        # two likelihood values, which would be affected by numerical precision errors if the two values are
        # too large
        self._saturated_model_like_per_maptree = collections.OrderedDict()

        # The actual computation is in a method so we can recall it on clone (see the get_simulated_dataset method)
        self._compute_likelihood_biases()

        # This will save a clone of self for simulations
        self._clone = None

        # Integration method for the PSF (see psf_integration_method)
        self._psf_integration_method = "exact"