def small_text():
    sentence1 = "Travel kills time."
    sentence2 = "France is a nice country."
    text = sentence1 + " " + sentence2

    term_extractor = C_NC_TermExtractor(text)
    terms = term_extractor.compute_cnc()
    former = ConceptFormer()
    former.form_concepts(terms)

    tripels = list(RelationExtractor.find_realation(text))
    former.find_hearst_concepts(tripels)

    print "Taxonomy: "
    pprint(former.get_taxonomy())

    concepts, relations = [], []
    for concept in list(former.get_taxonomy()):
        concepts.append(" ".join(concept.name))
        relations += concept.make_tripels()

    print "no con.: " + str(len(concepts))
    print "no rel.: " + str(len(relations))

    utils.dot_to_image(utils.taxonomy_to_dot(concepts, relations), 'france')
Beispiel #2
0
def small_text():
    sentence1 = "Travel kills time."
    sentence2 = "France is a nice country."
    text = sentence1 + " " + sentence2

    term_extractor = C_NC_TermExtractor(text)
    terms = term_extractor.compute_cnc()
    former = ConceptFormer()
    former.form_concepts(terms)

    tripels = list(RelationExtractor.find_realation(text))
    former.find_hearst_concepts(tripels)

    print "Taxonomy: "
    pprint(former.get_taxonomy())

    concepts, relations = [], []
    for concept in list(former.get_taxonomy()):
        concepts.append(" ".join(concept.name))
        relations += concept.make_tripels()

    print "no con.: " + str(len(concepts))
    print "no rel.: " + str(len(relations))

    utils.dot_to_image(utils.taxonomy_to_dot(concepts, relations), 'france')
Beispiel #3
0
import concept_former as cf
import term
import hearst_patterns as hp 

former = cf.conceptFormer()

text = 'The monkey bites the snake.'
pattern = hp.find_realation(text)

result = former.find_hearst_concepts(pattern)
print result

for concept in list(result):
	print str(concept) + ' ' + str(concept.get_relations())
import utils
import preprocessor as pp
from tree_combinations import numerate_non_terminals
import hearst_patterns
file_name = 'LeonHitsKai'
text = 'Leon hits Kai.'

print 'get relations by applying hearst patterns'
relations = hearst_patterns.find_realation(text)
print relations
print
print 'generate dot code'
dot_code = utils.list_of_tripels_to_dot(relations)
print dot_code
print
print 'convert dot code to image'
utils.dot_to_image(dot_code, file_name + '_relations')




import utils
import preprocessor as pp
from tree_combinations import numerate_non_terminals
import hearst_patterns
file_name = 'LeonHitsKai'
text = 'Leon hits Kai.'

print 'get relations by applying hearst patterns'
relations = hearst_patterns.find_realation(text)
print relations
print
print 'generate dot code'
dot_code = utils.list_of_tripels_to_dot(relations)
print dot_code
print
print 'convert dot code to image'
utils.dot_to_image(dot_code, file_name + '_relations')




Beispiel #6
0
import corpus
import hearst_patterns as hp
import utils

file_name = 'simple'

#text = corpus.CorpusReader().get_corpus()
text = 'Leon hits Kai. Marry f***s John. Kai greets Marry. John greets Leon.'
relations = hp.find_realation(text)

print
for r in relations:
    print r

if utils.which('dot'):
    dot_code = utils.list_of_tripels_to_dot(relations)
    utils.dot_to_image(dot_code, file_name + '_relations')
else:
    print "didn't find dot"
Beispiel #7
0
import concept_former as cf
import term
import hearst_patterns as hp 

former = cf.conceptFormer()

text = 'The monkey bites the snake.'
pattern = hp.find_realation(text)

result = former.find_hearst_concepts(pattern)
print result

for concept in list(result):
	print str(concept) + ' ' + str(concept.get_relations())