Beispiel #1
0
def main(write_output=True):
    from math import sin, exp, sqrt  # noqa

    from hedge.mesh.generator import make_rect_mesh
    mesh = make_rect_mesh(a=(-0.5, -0.5), b=(0.5, 0.5), max_area=0.008)

    from hedge.backends.jit import Discretization

    discr = Discretization(mesh, order=4)

    from hedge.visualization import VtkVisualizer
    vis = VtkVisualizer(discr, None, "fld")

    source_center = np.array([0.1, 0.22])
    source_width = 0.05
    source_omega = 3

    import hedge.optemplate as sym
    sym_x = sym.nodes(2)
    sym_source_center_dist = sym_x - source_center

    from hedge.models.wave import StrongWaveOperator
    from hedge.mesh import TAG_ALL, TAG_NONE
    op = StrongWaveOperator(
        -0.1,
        discr.dimensions,
        source_f=sym.CFunction("sin")(
            source_omega * sym.ScalarParameter("t")) * sym.CFunction("exp")(
                -np.dot(sym_source_center_dist, sym_source_center_dist) /
                source_width**2),
        dirichlet_tag=TAG_NONE,
        neumann_tag=TAG_NONE,
        radiation_tag=TAG_ALL,
        flux_type="upwind")

    from hedge.tools import join_fields
    fields = join_fields(
        discr.volume_zeros(),
        [discr.volume_zeros() for i in range(discr.dimensions)])

    from hedge.timestep.runge_kutta import LSRK4TimeStepper
    stepper = LSRK4TimeStepper()
    dt = op.estimate_timestep(discr, stepper=stepper, fields=fields)

    nsteps = int(10 / dt)
    print "dt=%g nsteps=%d" % (dt, nsteps)

    rhs = op.bind(discr)
    for step in range(nsteps):
        t = step * dt

        if step % 10 == 0 and write_output:
            print step, t, discr.norm(fields[0])
            visf = vis.make_file("fld-%04d" % step)

            vis.add_data(visf, [
                ("u", fields[0]),
                ("v", fields[1:]),
            ],
                         time=t,
                         step=step)
            visf.close()

        fields = stepper(fields, t, dt, rhs)

    vis.close()
Beispiel #2
0
def main(write_output=True,
         dir_tag=TAG_NONE,
         neu_tag=TAG_NONE,
         rad_tag=TAG_ALL,
         flux_type_arg="upwind"):
    from math import sin, cos, pi, exp, sqrt  # noqa

    from hedge.backends import guess_run_context
    rcon = guess_run_context()

    dim = 2

    if dim == 1:
        if rcon.is_head_rank:
            from hedge.mesh.generator import make_uniform_1d_mesh
            mesh = make_uniform_1d_mesh(-10, 10, 500)
    elif dim == 2:
        from hedge.mesh.generator import make_rect_mesh
        if rcon.is_head_rank:
            mesh = make_rect_mesh(a=(-1, -1), b=(1, 1), max_area=0.003)
    elif dim == 3:
        if rcon.is_head_rank:
            from hedge.mesh.generator import make_ball_mesh
            mesh = make_ball_mesh(max_volume=0.0005)
    else:
        raise RuntimeError("bad number of dimensions")

    if rcon.is_head_rank:
        print "%d elements" % len(mesh.elements)
        mesh_data = rcon.distribute_mesh(mesh)
    else:
        mesh_data = rcon.receive_mesh()

    discr = rcon.make_discretization(mesh_data, order=4)

    from hedge.timestep.runge_kutta import LSRK4TimeStepper
    stepper = LSRK4TimeStepper()

    from hedge.visualization import VtkVisualizer
    if write_output:
        vis = VtkVisualizer(discr, rcon, "fld")

    source_center = np.array([0.7, 0.4])
    source_width = 1 / 16
    source_omega = 3

    import hedge.optemplate as sym
    sym_x = sym.nodes(2)
    sym_source_center_dist = sym_x - source_center

    from hedge.models.wave import VariableVelocityStrongWaveOperator
    op = VariableVelocityStrongWaveOperator(
        c=sym.If(sym.Comparison(np.dot(sym_x, sym_x), "<", 0.4**2), 1, 0.5),
        dimensions=discr.dimensions,
        source=sym.CFunction("sin")(source_omega * sym.ScalarParameter("t")) *
        sym.CFunction("exp")(
            -np.dot(sym_source_center_dist, sym_source_center_dist) /
            source_width**2),
        dirichlet_tag=dir_tag,
        neumann_tag=neu_tag,
        radiation_tag=rad_tag,
        flux_type=flux_type_arg)

    from hedge.tools import join_fields
    fields = join_fields(
        discr.volume_zeros(),
        [discr.volume_zeros() for i in range(discr.dimensions)])

    # {{{ diagnostics setup

    from pytools.log import LogManager, \
            add_general_quantities, \
            add_simulation_quantities, \
            add_run_info

    if write_output:
        log_file_name = "wave.dat"
    else:
        log_file_name = None

    logmgr = LogManager(log_file_name, "w", rcon.communicator)
    add_run_info(logmgr)
    add_general_quantities(logmgr)
    add_simulation_quantities(logmgr)
    discr.add_instrumentation(logmgr)

    from pytools.log import IntervalTimer
    vis_timer = IntervalTimer("t_vis", "Time spent visualizing")
    logmgr.add_quantity(vis_timer)
    stepper.add_instrumentation(logmgr)

    from hedge.log import LpNorm
    u_getter = lambda: fields[0]
    logmgr.add_quantity(LpNorm(u_getter, discr, 1, name="l1_u"))
    logmgr.add_quantity(LpNorm(u_getter, discr, name="l2_u"))

    logmgr.add_watches(["step.max", "t_sim.max", "l2_u", "t_step.max"])

    # }}}

    # {{{ timestep loop

    rhs = op.bind(discr)
    try:
        from hedge.timestep.stability import \
                approximate_rk4_relative_imag_stability_region
        max_dt = (1 / discr.compile(op.max_eigenvalue_expr())() *
                  discr.dt_non_geometric_factor() *
                  discr.dt_geometric_factor() *
                  approximate_rk4_relative_imag_stability_region(stepper))
        if flux_type_arg == "central":
            max_dt *= 0.25

        from hedge.timestep import times_and_steps
        step_it = times_and_steps(final_time=3,
                                  logmgr=logmgr,
                                  max_dt_getter=lambda t: max_dt)

        for step, t, dt in step_it:
            if step % 10 == 0 and write_output:
                visf = vis.make_file("fld-%04d" % step)

                vis.add_data(visf, [
                    ("u", fields[0]),
                    ("v", fields[1:]),
                ],
                             time=t,
                             step=step)
                visf.close()

            fields = stepper(fields, t, dt, rhs)

        assert discr.norm(fields) < 1
    finally:
        if write_output:
            vis.close()

        logmgr.close()
        discr.close()
Beispiel #3
0
def main():
    from hedge.backends import guess_run_context
    rcon = guess_run_context()

    from hedge.tools import to_obj_array

    if rcon.is_head_rank:
        from hedge.mesh.generator import make_rect_mesh
        mesh = make_rect_mesh((-5, -5), (5, 5), max_area=0.01)
        mesh_data = rcon.distribute_mesh(mesh)
    else:
        mesh_data = rcon.receive_mesh()

    for order in [1]:
        discr = rcon.make_discretization(mesh_data,
                                         order=order,
                                         default_scalar_type=numpy.float64)

        from hedge.visualization import SiloVisualizer, VtkVisualizer
        vis = VtkVisualizer(discr, rcon, "Sod2D-%d" % order)
        #vis = SiloVisualizer(discr, rcon)

        sod_field = Sod(gamma=1.4)
        fields = sod_field.volume_interpolant(0, discr)

        from hedge.models.gas_dynamics import GasDynamicsOperator
        from hedge.mesh import TAG_ALL
        op = GasDynamicsOperator(dimensions=2,
                                 gamma=sod_field.gamma,
                                 mu=0.0,
                                 prandtl=sod_field.prandtl,
                                 bc_inflow=sod_field,
                                 bc_outflow=sod_field,
                                 bc_noslip=sod_field,
                                 inflow_tag=TAG_ALL,
                                 source=None)

        euler_ex = op.bind(discr)

        max_eigval = [0]

        def rhs(t, q):
            ode_rhs, speed = euler_ex(t, q)
            max_eigval[0] = speed
            return ode_rhs

        rhs(0, fields)

        if rcon.is_head_rank:
            print "---------------------------------------------"
            print "order %d" % order
            print "---------------------------------------------"
            print "#elements=", len(mesh.elements)

        # limiter setup ------------------------------------------------------------
        from hedge.models.gas_dynamics import SlopeLimiter1NEuler
        limiter = SlopeLimiter1NEuler(discr, sod_field.gamma, 2, op)

        # integrator setup---------------------------------------------------------
        from hedge.timestep import SSPRK3TimeStepper, RK4TimeStepper
        stepper = SSPRK3TimeStepper(limiter=limiter)
        #stepper = SSPRK3TimeStepper()
        #stepper = RK4TimeStepper()

        # diagnostics setup ---------------------------------------------------
        from pytools.log import LogManager, add_general_quantities, \
                add_simulation_quantities, add_run_info

        logmgr = LogManager("euler-%d.dat" % order, "w", rcon.communicator)
        add_run_info(logmgr)
        add_general_quantities(logmgr)
        add_simulation_quantities(logmgr)
        discr.add_instrumentation(logmgr)
        stepper.add_instrumentation(logmgr)

        logmgr.add_watches(["step.max", "t_sim.max", "t_step.max"])

        # filter setup-------------------------------------------------------------
        from hedge.discretization import Filter, ExponentialFilterResponseFunction
        mode_filter = Filter(
            discr,
            ExponentialFilterResponseFunction(min_amplification=0.9, order=4))

        # timestep loop -------------------------------------------------------
        try:
            from hedge.timestep import times_and_steps
            step_it = times_and_steps(
                final_time=1.0,
                logmgr=logmgr,
                max_dt_getter=lambda t: op.estimate_timestep(
                    discr, stepper=stepper, t=t, max_eigenvalue=max_eigval[0]))

            for step, t, dt in step_it:
                if step % 5 == 0:
                    #if False:
                    visf = vis.make_file("vortex-%d-%04d" % (order, step))

                    #true_fields = vortex.volume_interpolant(t, discr)

                    #from pyvisfile.silo import DB_VARTYPE_VECTOR
                    vis.add_data(
                        visf,
                        [
                            ("rho",
                             discr.convert_volume(op.rho(fields),
                                                  kind="numpy")),
                            ("e",
                             discr.convert_volume(op.e(fields), kind="numpy")),
                            ("rho_u",
                             discr.convert_volume(op.rho_u(fields),
                                                  kind="numpy")),
                            ("u",
                             discr.convert_volume(op.u(fields), kind="numpy")),

                            #("true_rho", op.rho(true_fields)),
                            #("true_e", op.e(true_fields)),
                            #("true_rho_u", op.rho_u(true_fields)),
                            #("true_u", op.u(true_fields)),

                            #("rhs_rho", op.rho(rhs_fields)),
                            #("rhs_e", op.e(rhs_fields)),
                            #("rhs_rho_u", op.rho_u(rhs_fields)),
                        ],
                        #expressions=[
                        #("diff_rho", "rho-true_rho"),
                        #("diff_e", "e-true_e"),
                        #("diff_rho_u", "rho_u-true_rho_u", DB_VARTYPE_VECTOR),

                        #("p", "0.4*(e- 0.5*(rho_u*u))"),
                        #],
                        time=t,
                        step=step)
                    visf.close()

                fields = stepper(fields, t, dt, rhs)
                # fields = limiter(fields)
                # fields = mode_filter(fields)

                assert not numpy.isnan(numpy.sum(fields[0]))
        finally:
            vis.close()
            logmgr.close()
            discr.close()

        # not solution, just to check against when making code changes
        true_fields = sod_field.volume_interpolant(t, discr)
        print discr.norm(fields - true_fields)
Beispiel #4
0
def main(write_output=True):
    from math import sin, cos, pi, exp, sqrt
    from hedge.data import TimeConstantGivenFunction, \
            ConstantGivenFunction

    from hedge.backends import guess_run_context
    rcon = guess_run_context()

    dim = 2

    def boundary_tagger(fvi, el, fn, all_v):
        if el.face_normals[fn][0] > 0:
            return ["dirichlet"]
        else:
            return ["neumann"]

    if dim == 2:
        if rcon.is_head_rank:
            from hedge.mesh.generator import make_disk_mesh
            mesh = make_disk_mesh(r=0.5, boundary_tagger=boundary_tagger)
    elif dim == 3:
        if rcon.is_head_rank:
            from hedge.mesh.generator import make_ball_mesh
            mesh = make_ball_mesh(max_volume=0.001)
    else:
        raise RuntimeError, "bad number of dimensions"

    if rcon.is_head_rank:
        print "%d elements" % len(mesh.elements)
        mesh_data = rcon.distribute_mesh(mesh)
    else:
        mesh_data = rcon.receive_mesh()

    discr = rcon.make_discretization(mesh_data,
                                     order=3,
                                     debug=["cuda_no_plan"],
                                     default_scalar_type=numpy.float64)

    if write_output:
        from hedge.visualization import VtkVisualizer
        vis = VtkVisualizer(discr, rcon, "fld")

    def u0(x, el):
        if la.norm(x) < 0.2:
            return 1
        else:
            return 0

    def coeff(x, el):
        if x[0] < 0:
            return 0.25
        else:
            return 1

    def dirichlet_bc(t, x):
        return 0

    def neumann_bc(t, x):
        return 2

    from hedge.models.diffusion import DiffusionOperator
    op = DiffusionOperator(
        discr.dimensions,
        #coeff=coeff,
        dirichlet_tag="dirichlet",
        dirichlet_bc=TimeConstantGivenFunction(ConstantGivenFunction(0)),
        neumann_tag="neumann",
        neumann_bc=TimeConstantGivenFunction(ConstantGivenFunction(1)))
    u = discr.interpolate_volume_function(u0)

    # diagnostics setup -------------------------------------------------------
    from pytools.log import LogManager, \
            add_general_quantities, \
            add_simulation_quantities, \
            add_run_info

    if write_output:
        log_file_name = "heat.dat"
    else:
        log_file_name = None

    logmgr = LogManager(log_file_name, "w", rcon.communicator)
    add_run_info(logmgr)
    add_general_quantities(logmgr)
    add_simulation_quantities(logmgr)
    discr.add_instrumentation(logmgr)

    from hedge.log import LpNorm
    u_getter = lambda: u
    logmgr.add_quantity(LpNorm(u_getter, discr, 1, name="l1_u"))
    logmgr.add_quantity(LpNorm(u_getter, discr, name="l2_u"))

    logmgr.add_watches(["step.max", "t_sim.max", "l2_u", "t_step.max"])

    # timestep loop -----------------------------------------------------------
    from hedge.timestep.runge_kutta import LSRK4TimeStepper, ODE45TimeStepper
    from hedge.timestep.dumka3 import Dumka3TimeStepper
    #stepper = LSRK4TimeStepper()
    stepper = Dumka3TimeStepper(
        3,
        rtol=1e-6,
        rcon=rcon,
        vector_primitive_factory=discr.get_vector_primitive_factory(),
        dtype=discr.default_scalar_type)
    #stepper = ODE45TimeStepper(rtol=1e-6, rcon=rcon,
    #vector_primitive_factory=discr.get_vector_primitive_factory(),
    #dtype=discr.default_scalar_type)
    stepper.add_instrumentation(logmgr)

    rhs = op.bind(discr)
    try:
        next_dt = op.estimate_timestep(discr,
                                       stepper=LSRK4TimeStepper(),
                                       t=0,
                                       fields=u)

        from hedge.timestep import times_and_steps
        step_it = times_and_steps(final_time=0.1,
                                  logmgr=logmgr,
                                  max_dt_getter=lambda t: next_dt,
                                  taken_dt_getter=lambda: taken_dt)

        for step, t, dt in step_it:
            if step % 10 == 0 and write_output:
                visf = vis.make_file("fld-%04d" % step)
                vis.add_data(visf, [
                    ("u", discr.convert_volume(u, kind="numpy")),
                ],
                             time=t,
                             step=step)
                visf.close()

            u, t, taken_dt, next_dt = stepper(u, t, next_dt, rhs)
            #u = stepper(u, t, dt, rhs)

        assert discr.norm(u) < 1
    finally:
        if write_output:
            vis.close()

        logmgr.close()
        discr.close()
Beispiel #5
0
def main(write_output=True, dtype=np.float32):
    from hedge.backends import guess_run_context
    rcon = guess_run_context()

    from hedge.mesh.generator import make_rect_mesh
    if rcon.is_head_rank:
        h_fac = 1
        mesh = make_rect_mesh(a=(0,0),b=(1,1), max_area=h_fac**2*1e-4,
                periodicity=(True,True),
                subdivisions=(int(70/h_fac), int(70/h_fac)))

    from hedge.models.gas_dynamics.lbm import \
            D2Q9LBMMethod, LatticeBoltzmannOperator

    op = LatticeBoltzmannOperator(
            D2Q9LBMMethod(), lbm_delta_t=0.001, nu=1e-4)

    if rcon.is_head_rank:
        print "%d elements" % len(mesh.elements)
        mesh_data = rcon.distribute_mesh(mesh)
    else:
        mesh_data = rcon.receive_mesh()

    discr = rcon.make_discretization(mesh_data, order=3,
            default_scalar_type=dtype,
            debug=["cuda_no_plan"])
    from hedge.timestep.runge_kutta import LSRK4TimeStepper
    stepper = LSRK4TimeStepper(dtype=dtype,
            #vector_primitive_factory=discr.get_vector_primitive_factory()
            )

    from hedge.visualization import VtkVisualizer
    if write_output:
        vis = VtkVisualizer(discr, rcon, "fld")

    from hedge.data import CompiledExpressionData
    def ic_expr(t, x, fields):
        from hedge.optemplate import CFunction
        from pymbolic.primitives import IfPositive
        from pytools.obj_array import make_obj_array

        tanh = CFunction("tanh")
        sin = CFunction("sin")

        rho = 1
        u0 = 0.05
        w = 0.05
        delta = 0.05

        from hedge.optemplate.primitives import make_common_subexpression as cse
        u = cse(make_obj_array([
            IfPositive(x[1]-1/2,
                u0*tanh(4*(3/4-x[1])/w),
                u0*tanh(4*(x[1]-1/4)/w)),
            u0*delta*sin(2*np.pi*(x[0]+1/4))]),
            "u")

        return make_obj_array([
            op.method.f_equilibrium(rho, alpha, u)
            for alpha in range(len(op.method))
            ])


    # timestep loop -----------------------------------------------------------
    stream_rhs = op.bind_rhs(discr)
    collision_update = op.bind(discr, op.collision_update)
    get_rho = op.bind(discr, op.rho)
    get_rho_u = op.bind(discr, op.rho_u)


    f_bar = CompiledExpressionData(ic_expr).volume_interpolant(0, discr)

    from hedge.discretization import ExponentialFilterResponseFunction
    from hedge.optemplate.operators import FilterOperator
    mode_filter = FilterOperator(
            ExponentialFilterResponseFunction(min_amplification=0.9, order=4))\
                    .bind(discr)

    final_time = 1000
    try:
        lbm_dt = op.lbm_delta_t
        dg_dt = op.estimate_timestep(discr, stepper=stepper)
        print dg_dt

        dg_steps_per_lbm_step = int(np.ceil(lbm_dt / dg_dt))
        dg_dt = lbm_dt / dg_steps_per_lbm_step

        lbm_steps = int(final_time // op.lbm_delta_t)
        for step in xrange(lbm_steps):
            t = step*lbm_dt

            if step % 100 == 0 and write_output:
                visf = vis.make_file("fld-%04d" % step)

                rho = get_rho(f_bar)
                rho_u = get_rho_u(f_bar)
                vis.add_data(visf,
                        [ ("fbar%d" %i, 
                            discr.convert_volume(f_bar_i, "numpy")) for i, f_bar_i in enumerate(f_bar)]+
                        [
                            ("rho", discr.convert_volume(rho, "numpy")),
                            ("rho_u", discr.convert_volume(rho_u, "numpy")),
                        ],
                        time=t,
                        step=step)
                visf.close()

            print "step=%d, t=%f" % (step, t)

            f_bar = collision_update(f_bar)

            for substep in range(dg_steps_per_lbm_step):
                f_bar = stepper(f_bar, t + substep*dg_dt, dg_dt, stream_rhs)

            #f_bar = mode_filter(f_bar)

    finally:
        if write_output:
            vis.close()

        discr.close()
Beispiel #6
0
def main(write_output=True,
         dir_tag=TAG_NONE,
         neu_tag=TAG_NONE,
         rad_tag=TAG_ALL,
         flux_type_arg="upwind",
         dtype=np.float64,
         debug=[]):
    from math import sin, cos, pi, exp, sqrt  # noqa

    from hedge.backends import guess_run_context
    rcon = guess_run_context()

    dim = 2

    if dim == 1:
        if rcon.is_head_rank:
            from hedge.mesh.generator import make_uniform_1d_mesh
            mesh = make_uniform_1d_mesh(-10, 10, 500)
    elif dim == 2:
        from hedge.mesh.generator import make_rect_mesh
        if rcon.is_head_rank:
            mesh = make_rect_mesh(a=(-0.5, -0.5), b=(0.5, 0.5), max_area=0.008)
    elif dim == 3:
        if rcon.is_head_rank:
            from hedge.mesh.generator import make_ball_mesh
            mesh = make_ball_mesh(max_volume=0.0005)
    else:
        raise RuntimeError("bad number of dimensions")

    if rcon.is_head_rank:
        print "%d elements" % len(mesh.elements)
        mesh_data = rcon.distribute_mesh(mesh)
    else:
        mesh_data = rcon.receive_mesh()

    from hedge.timestep.runge_kutta import LSRK4TimeStepper
    stepper = LSRK4TimeStepper(dtype=dtype)

    from hedge.models.wave import StrongWaveOperator
    from hedge.mesh import TAG_ALL, TAG_NONE  # noqa

    source_center = np.array([0.1, 0.22])
    source_width = 0.05
    source_omega = 3

    import hedge.optemplate as sym
    sym_x = sym.nodes(2)
    sym_source_center_dist = sym_x - source_center

    op = StrongWaveOperator(
        -1,
        dim,
        source_f=sym.CFunction("sin")(
            source_omega * sym.ScalarParameter("t")) * sym.CFunction("exp")(
                -np.dot(sym_source_center_dist, sym_source_center_dist) /
                source_width**2),
        dirichlet_tag=dir_tag,
        neumann_tag=neu_tag,
        radiation_tag=rad_tag,
        flux_type=flux_type_arg)

    discr = rcon.make_discretization(mesh_data,
                                     order=4,
                                     debug=debug,
                                     default_scalar_type=dtype,
                                     tune_for=op.op_template())

    from hedge.visualization import VtkVisualizer
    if write_output:
        vis = VtkVisualizer(discr, rcon, "fld")

    from hedge.tools import join_fields
    fields = join_fields(
        discr.volume_zeros(dtype=dtype),
        [discr.volume_zeros(dtype=dtype) for i in range(discr.dimensions)])

    # {{{ diagnostics setup

    from pytools.log import LogManager, \
            add_general_quantities, \
            add_simulation_quantities, \
            add_run_info

    if write_output:
        log_file_name = "wave.dat"
    else:
        log_file_name = None

    logmgr = LogManager(log_file_name, "w", rcon.communicator)
    add_run_info(logmgr)
    add_general_quantities(logmgr)
    add_simulation_quantities(logmgr)
    discr.add_instrumentation(logmgr)

    from pytools.log import IntervalTimer
    vis_timer = IntervalTimer("t_vis", "Time spent visualizing")
    logmgr.add_quantity(vis_timer)
    stepper.add_instrumentation(logmgr)

    from hedge.log import LpNorm
    u_getter = lambda: fields[0]
    logmgr.add_quantity(LpNorm(u_getter, discr, 1, name="l1_u"))
    logmgr.add_quantity(LpNorm(u_getter, discr, name="l2_u"))

    logmgr.add_watches(["step.max", "t_sim.max", "l2_u", "t_step.max"])

    # }}}

    # {{{ timestep loop

    rhs = op.bind(discr)
    try:
        from hedge.timestep import times_and_steps
        step_it = times_and_steps(
            final_time=4,
            logmgr=logmgr,
            max_dt_getter=lambda t: op.estimate_timestep(
                discr, stepper=stepper, t=t, fields=fields))

        for step, t, dt in step_it:
            if step % 10 == 0 and write_output:
                visf = vis.make_file("fld-%04d" % step)

                vis.add_data(visf, [
                    ("u", discr.convert_volume(fields[0], kind="numpy")),
                    ("v", discr.convert_volume(fields[1:], kind="numpy")),
                ],
                             time=t,
                             step=step)
                visf.close()

            fields = stepper(fields, t, dt, rhs)

        assert discr.norm(fields) < 1
        assert fields[0].dtype == dtype

    finally:
        if write_output:
            vis.close()

        logmgr.close()
        discr.close()
Beispiel #7
0
def main(write_output=True, flux_type_arg="central", use_quadrature=True,
        final_time=20):
    from math import sin, cos, pi, sqrt

    from hedge.backends import guess_run_context
    rcon = guess_run_context()

    # mesh setup --------------------------------------------------------------
    if rcon.is_head_rank:
        #from hedge.mesh.generator import make_disk_mesh
        #mesh = make_disk_mesh()
        from hedge.mesh.generator import make_rect_mesh
        mesh = make_rect_mesh(a=(-1,-1),b=(1,1),max_area=0.008)

    if rcon.is_head_rank:
        mesh_data = rcon.distribute_mesh(mesh)
    else:
        mesh_data = rcon.receive_mesh()

    # space-time-dependent-velocity-field -------------------------------------
    # simple vortex
    class TimeDependentVField:
        """ `TimeDependentVField` is a callable expecting `(x, t)` representing space and time

        `x` is of the length of the spatial dimension and `t` is the time."""
        shape = (2,)

        def __call__(self, pt, el, t):
            x, y = pt
            # Correction-Factor to make the speed zero on the on the boundary
            #fac = (1-x**2)*(1-y**2)
            fac = 1.
            return numpy.array([-y*fac, x*fac]) * cos(pi*t)

    class VField:
        """ `VField` is a callable expecting `(x)` representing space

        `x` is of the length of the spatial dimension."""
        shape = (2,)

        def __call__(self, pt, el):
            x, y = pt
            # Correction-Factor to make the speed zero on the on the boundary
            #fac = (1-x**2)*(1-y**2)
            fac = 1.
            return numpy.array([-y*fac, x*fac])

    # space-time-dependent State BC (optional)-----------------------------------
    class TimeDependentBc_u:
        """ space and time dependent BC for state u"""
        def __call__(self, pt, el, t):
            x, y = pt
            if t <= 0.5:
                if x > 0:
                    return 1
                else:
                    return 0
            else:
                return 0

    class Bc_u:
        """ Only space dependent BC for state u"""
        def __call__(seld, pt, el):
            x, y = pt
            if x > 0:
                return 1
            else:
                return 0


    # operator setup ----------------------------------------------------------
    # In the operator setup it is possible to switch between a only space
    # dependent velocity field `VField` or a time and space dependent
    # `TimeDependentVField`.
    # For `TimeDependentVField`: advec_v=TimeDependentGivenFunction(VField())
    # For `VField`: advec_v=TimeConstantGivenFunction(GivenFunction(VField()))
    # Same for the Bc_u Function! If you don't define Bc_u then the BC for u = 0.

    from hedge.data import \
            ConstantGivenFunction, \
            TimeConstantGivenFunction, \
            TimeDependentGivenFunction, \
            GivenFunction
    from hedge.models.advection import VariableCoefficientAdvectionOperator
    op = VariableCoefficientAdvectionOperator(mesh.dimensions,
        #advec_v=TimeDependentGivenFunction(
        #    TimeDependentVField()),
        advec_v=TimeConstantGivenFunction(
            GivenFunction(VField())),
        #bc_u_f=TimeDependentGivenFunction(
        #    TimeDependentBc_u()),
        bc_u_f=TimeConstantGivenFunction(
            GivenFunction(Bc_u())),
        flux_type=flux_type_arg)

    # discretization setup ----------------------------------------------------
    order = 5
    if use_quadrature:
        quad_min_degrees = {"quad": 3*order}
    else:
        quad_min_degrees = {}

    discr = rcon.make_discretization(mesh_data, order=order,
            default_scalar_type=numpy.float64, 
            debug=["cuda_no_plan"],
            quad_min_degrees=quad_min_degrees,
            tune_for=op.op_template(),

            )
    vis_discr = discr

    # visualization setup -----------------------------------------------------
    from hedge.visualization import VtkVisualizer
    if write_output:
        vis = VtkVisualizer(vis_discr, rcon, "fld")

    # initial condition -------------------------------------------------------
    if True:
        def initial(pt, el):
            # Gauss pulse
            from math import exp
            x = (pt-numpy.array([0.3, 0.5]))*8
            return exp(-numpy.dot(x, x))
    else:
        def initial(pt, el):
            # Rectangle
            x, y = pt
            if abs(x) < 0.5 and abs(y) < 0.2:
                return 2
            else:
                return 1

    u = discr.interpolate_volume_function(initial)

    # timestep setup ----------------------------------------------------------
    from hedge.timestep.runge_kutta import LSRK4TimeStepper
    stepper = LSRK4TimeStepper(
            vector_primitive_factory=discr.get_vector_primitive_factory())

    if rcon.is_head_rank:
        print "%d elements" % len(discr.mesh.elements)

    # filter setup-------------------------------------------------------------
    from hedge.discretization import ExponentialFilterResponseFunction
    from hedge.optemplate.operators import FilterOperator
    mode_filter = FilterOperator(
            ExponentialFilterResponseFunction(min_amplification=0.9,order=4))\
                    .bind(discr)

    # diagnostics setup -------------------------------------------------------
    from pytools.log import LogManager, \
            add_general_quantities, \
            add_simulation_quantities, \
            add_run_info

    if write_output:
        log_file_name = "space-dep.dat"
    else:
        log_file_name = None

    logmgr = LogManager(log_file_name, "w", rcon.communicator)
    add_run_info(logmgr)
    add_general_quantities(logmgr)
    add_simulation_quantities(logmgr)
    discr.add_instrumentation(logmgr)

    stepper.add_instrumentation(logmgr)

    from hedge.log import Integral, LpNorm
    u_getter = lambda: u
    logmgr.add_quantity(Integral(u_getter, discr, name="int_u"))
    logmgr.add_quantity(LpNorm(u_getter, discr, p=1, name="l1_u"))
    logmgr.add_quantity(LpNorm(u_getter, discr, name="l2_u"))

    logmgr.add_watches(["step.max", "t_sim.max", "l2_u", "t_step.max"])

    # Initialize v for data output:
    v = op.advec_v.volume_interpolant(0, discr)

    # timestep loop -----------------------------------------------------------
    rhs = op.bind(discr)
    try:
        from hedge.timestep import times_and_steps
        step_it = times_and_steps(
                final_time=final_time, logmgr=logmgr,
                max_dt_getter=lambda t: op.estimate_timestep(discr,
                    stepper=stepper, t=t, fields=u))

        for step, t, dt in step_it:
            if step % 10 == 0 and write_output:
                visf = vis.make_file("fld-%04d" % step)
                vis.add_data(visf, [ 
                    ("u", discr.convert_volume(u, kind="numpy")), 
                    ("v", discr.convert_volume(v, kind="numpy"))
                    ], time=t, step=step)
                visf.close()

            u = stepper(u, t, dt, rhs)

            # We're feeding in a discontinuity through the BCs.
            # Quadrature does not help with shock capturing--
            # therefore we do need to filter here, regardless
            # of whether quadrature is enabled.
            u = mode_filter(u)

        assert discr.norm(u) < 10

    finally:
        if write_output:
            vis.close()

        logmgr.close()
        discr.close()
Beispiel #8
0
def main(write_output=True):
    from pytools import add_python_path_relative_to_script
    add_python_path_relative_to_script("..")

    from hedge.backends import guess_run_context
    rcon = guess_run_context()

    from hedge.tools import EOCRecorder
    eoc_rec = EOCRecorder()

    if rcon.is_head_rank:
        from hedge.mesh.generator import \
                make_rect_mesh, \
                make_centered_regular_rect_mesh

        refine = 4
        mesh = make_centered_regular_rect_mesh((0,-5), (10,5), n=(9,9),
                post_refine_factor=refine)
        mesh_data = rcon.distribute_mesh(mesh)
    else:
        mesh_data = rcon.receive_mesh()

    for order in [3, 4, 5]:
        from gas_dynamics_initials import Vortex
        flow = Vortex()

        from hedge.models.gas_dynamics import (
                GasDynamicsOperator, PolytropeEOS, GammaLawEOS)

        from hedge.mesh import TAG_ALL
        # works equally well for GammaLawEOS
        op = GasDynamicsOperator(dimensions=2, mu=flow.mu,
                prandtl=flow.prandtl, spec_gas_const=flow.spec_gas_const,
                equation_of_state=PolytropeEOS(flow.gamma),
                bc_inflow=flow, bc_outflow=flow, bc_noslip=flow,
                inflow_tag=TAG_ALL, source=None)

        discr = rcon.make_discretization(mesh_data, order=order,
                        default_scalar_type=numpy.float64,
                        quad_min_degrees={
                            "gasdyn_vol": 3*order,
                            "gasdyn_face": 3*order,
                            },
                        tune_for=op.op_template(),
                        debug=["cuda_no_plan"])

        from hedge.visualization import SiloVisualizer, VtkVisualizer
        vis = VtkVisualizer(discr, rcon, "vortex-%d" % order)
        #vis = SiloVisualizer(discr, rcon)

        fields = flow.volume_interpolant(0, discr)

        euler_ex = op.bind(discr)

        max_eigval = [0]
        def rhs(t, q):
            ode_rhs, speed = euler_ex(t, q)
            max_eigval[0] = speed
            return ode_rhs
        rhs(0, fields)

        if rcon.is_head_rank:
            print "---------------------------------------------"
            print "order %d" % order
            print "---------------------------------------------"
            print "#elements=", len(mesh.elements)


        # limiter ------------------------------------------------------------
        from hedge.models.gas_dynamics import SlopeLimiter1NEuler
        limiter = SlopeLimiter1NEuler(discr, flow.gamma, 2, op)

        from hedge.timestep.runge_kutta import SSP3TimeStepper
        #stepper = SSP3TimeStepper(limiter=limiter)
        stepper = SSP3TimeStepper(
                vector_primitive_factory=discr.get_vector_primitive_factory())

        #from hedge.timestep import RK4TimeStepper
        #stepper = RK4TimeStepper()

        # diagnostics setup ---------------------------------------------------
        from pytools.log import LogManager, add_general_quantities, \
                add_simulation_quantities, add_run_info

        if write_output:
            log_file_name = "euler-%d.dat" % order
        else:
            log_file_name = None

        logmgr = LogManager(log_file_name, "w", rcon.communicator)
        add_run_info(logmgr)
        add_general_quantities(logmgr)
        add_simulation_quantities(logmgr)
        discr.add_instrumentation(logmgr)
        stepper.add_instrumentation(logmgr)

        logmgr.add_watches(["step.max", "t_sim.max", "t_step.max"])

        # timestep loop -------------------------------------------------------
        try:
            final_time = flow.final_time
            from hedge.timestep import times_and_steps
            step_it = times_and_steps(
                    final_time=final_time, logmgr=logmgr,
                    max_dt_getter=lambda t: op.estimate_timestep(discr,
                        stepper=stepper, t=t, max_eigenvalue=max_eigval[0]))

            print "run until t=%g" % final_time
            for step, t, dt in step_it:
                if step % 10 == 0 and write_output:
                #if False:
                    visf = vis.make_file("vortex-%d-%04d" % (order, step))

                    #true_fields = vortex.volume_interpolant(t, discr)

                    from pyvisfile.silo import DB_VARTYPE_VECTOR
                    vis.add_data(visf,
                            [
                                ("rho", discr.convert_volume(op.rho(fields), kind="numpy")),
                                ("e", discr.convert_volume(op.e(fields), kind="numpy")),
                                ("rho_u", discr.convert_volume(op.rho_u(fields), kind="numpy")),
                                ("u", discr.convert_volume(op.u(fields), kind="numpy")),

                                #("true_rho", discr.convert_volume(op.rho(true_fields), kind="numpy")),
                                #("true_e", discr.convert_volume(op.e(true_fields), kind="numpy")),
                                #("true_rho_u", discr.convert_volume(op.rho_u(true_fields), kind="numpy")),
                                #("true_u", discr.convert_volume(op.u(true_fields), kind="numpy")),

                                #("rhs_rho", discr.convert_volume(op.rho(rhs_fields), kind="numpy")),
                                #("rhs_e", discr.convert_volume(op.e(rhs_fields), kind="numpy")),
                                #("rhs_rho_u", discr.convert_volume(op.rho_u(rhs_fields), kind="numpy")),
                                ],
                            #expressions=[
                                #("diff_rho", "rho-true_rho"),
                                #("diff_e", "e-true_e"),
                                #("diff_rho_u", "rho_u-true_rho_u", DB_VARTYPE_VECTOR),

                                #("p", "0.4*(e- 0.5*(rho_u*u))"),
                                #],
                            time=t, step=step
                            )
                    visf.close()

                fields = stepper(fields, t, dt, rhs)
                #fields = limiter(fields)

                assert not numpy.isnan(numpy.sum(fields[0]))

            true_fields = flow.volume_interpolant(final_time, discr)
            l2_error = discr.norm(fields-true_fields)
            l2_error_rho = discr.norm(op.rho(fields)-op.rho(true_fields))
            l2_error_e = discr.norm(op.e(fields)-op.e(true_fields))
            l2_error_rhou = discr.norm(op.rho_u(fields)-op.rho_u(true_fields))
            l2_error_u = discr.norm(op.u(fields)-op.u(true_fields))

            eoc_rec.add_data_point(order, l2_error)
            print
            print eoc_rec.pretty_print("P.Deg.", "L2 Error")

            logmgr.set_constant("l2_error", l2_error)
            logmgr.set_constant("l2_error_rho", l2_error_rho)
            logmgr.set_constant("l2_error_e", l2_error_e)
            logmgr.set_constant("l2_error_rhou", l2_error_rhou)
            logmgr.set_constant("l2_error_u", l2_error_u)
            logmgr.set_constant("refinement", refine)

        finally:
            if write_output:
                vis.close()

            logmgr.close()
            discr.close()

    # after order loop
    assert eoc_rec.estimate_order_of_convergence()[0,1] > 6
Beispiel #9
0
def main(write_output=True, allow_features=None):
    from hedge.timestep import RK4TimeStepper
    from hedge.mesh import make_ball_mesh, make_cylinder_mesh, make_box_mesh
    from hedge.visualization import \
            VtkVisualizer, \
            SiloVisualizer, \
            get_rank_partition
    from math import sqrt, pi

    from hedge.backends import guess_run_context
    rcon = guess_run_context(allow_features)

    epsilon0 = 8.8541878176e-12 # C**2 / (N m**2)
    mu0 = 4*pi*1e-7 # N/A**2.
    epsilon = 1*epsilon0
    mu = 1*mu0

    dims = 3

    if rcon.is_head_rank:
        if dims == 2:
            from hedge.mesh import make_rect_mesh
            mesh = make_rect_mesh(
                    a=(-10.5,-1.5),
                    b=(10.5,1.5),
                    max_area=0.1
                    )
        elif dims == 3:
            from hedge.mesh import make_box_mesh
            mesh = make_box_mesh(
                    a=(-10.5,-1.5,-1.5),
                    b=(10.5,1.5,1.5),
                    max_volume=0.1)

    if rcon.is_head_rank:
        mesh_data = rcon.distribute_mesh(mesh)
    else:
        mesh_data = rcon.receive_mesh()

    #for order in [1,2,3,4,5,6]:
    discr = rcon.make_discretization(mesh_data, order=3)

    if write_output:
        vis = VtkVisualizer(discr, rcon, "dipole")

    from analytic_solutions import DipoleFarField, SphericalFieldAdapter
    from hedge.data import ITimeDependentGivenFunction

    sph_dipole = DipoleFarField(
            q=1, #C
            d=1/39,
            omega=2*pi*1e8,
            epsilon=epsilon0,
            mu=mu0,
            )
    cart_dipole = SphericalFieldAdapter(sph_dipole)

    class PointDipoleSource(ITimeDependentGivenFunction):
        def __init__(self):
            from pyrticle.tools import CInfinityShapeFunction
            sf = CInfinityShapeFunction(
                        0.1*sph_dipole.wavelength,
                        discr.dimensions)
            self.num_sf = discr.interpolate_volume_function(
                    lambda x, el: sf(x))
            self.vol_0 = discr.volume_zeros()

        def volume_interpolant(self, t, discr):
            from hedge.tools import make_obj_array
            return make_obj_array([
                self.vol_0,
                self.vol_0,
                sph_dipole.source_modulation(t)*self.num_sf
                ])

    from hedge.mesh import TAG_ALL, TAG_NONE
    if dims == 2:
        from hedge.models.em import TMMaxwellOperator as MaxwellOperator
    else:
        from hedge.models.em import MaxwellOperator

    op = MaxwellOperator(
            epsilon, mu,
            flux_type=1,
            pec_tag=TAG_NONE,
            absorb_tag=TAG_ALL,
            current=PointDipoleSource(),
            )

    fields = op.assemble_eh(discr=discr)

    if rcon.is_head_rank:
        print "#elements=", len(mesh.elements)

    stepper = RK4TimeStepper()

    # diagnostics setup ---------------------------------------------------
    from pytools.log import LogManager, add_general_quantities, \
            add_simulation_quantities, add_run_info

    if write_output:
        log_file_name = "dipole.dat"
    else:
        log_file_name = None

    logmgr = LogManager(log_file_name, "w", rcon.communicator)
    add_run_info(logmgr)
    add_general_quantities(logmgr)
    add_simulation_quantities(logmgr)
    discr.add_instrumentation(logmgr)
    stepper.add_instrumentation(logmgr)

    from pytools.log import IntervalTimer
    vis_timer = IntervalTimer("t_vis", "Time spent visualizing")
    logmgr.add_quantity(vis_timer)

    from hedge.log import EMFieldGetter, add_em_quantities
    field_getter = EMFieldGetter(discr, op, lambda: fields)
    add_em_quantities(logmgr, op, field_getter)

    from pytools.log import PushLogQuantity
    relerr_e_q = PushLogQuantity("relerr_e", "1", "Relative error in masked E-field")
    relerr_h_q = PushLogQuantity("relerr_h", "1", "Relative error in masked H-field")
    logmgr.add_quantity(relerr_e_q)
    logmgr.add_quantity(relerr_h_q)

    logmgr.add_watches(["step.max", "t_sim.max", 
        ("W_field", "W_el+W_mag"), "t_step.max",
        "relerr_e", "relerr_h"])

    if write_output:
        point_timeseries = [
                (open("b-x%d-vs-time.dat" % i, "w"), 
                    open("b-x%d-vs-time-true.dat" % i, "w"), 
                    discr.get_point_evaluator(numpy.array([i,0,0][:dims],
                        dtype=discr.default_scalar_type)))
                    for i in range(1,5)
                    ]

    # timestep loop -------------------------------------------------------
    mask = discr.interpolate_volume_function(sph_dipole.far_field_mask)

    def apply_mask(field):
        from hedge.tools import log_shape
        ls = log_shape(field)
        result = discr.volume_empty(ls)
        from pytools import indices_in_shape
        for i in indices_in_shape(ls):
            result[i] = mask * field[i]

        return result

    rhs = op.bind(discr)

    t = 0
    try:
        from hedge.timestep import times_and_steps
        step_it = times_and_steps(
                final_time=1e-8, logmgr=logmgr,
                max_dt_getter=lambda t: op.estimate_timestep(discr,
                    stepper=stepper, t=t, fields=fields))

        for step, t, dt in step_it:
            if write_output and step % 10 == 0:
                sub_timer = vis_timer.start_sub_timer()
                e, h = op.split_eh(fields)
                sph_dipole.set_time(t)
                true_e, true_h = op.split_eh(
                        discr.interpolate_volume_function(cart_dipole))
                visf = vis.make_file("dipole-%04d" % step)

                mask_e = apply_mask(e)
                mask_h = apply_mask(h)
                mask_true_e = apply_mask(true_e)
                mask_true_h = apply_mask(true_h)

                from pyvisfile.silo import DB_VARTYPE_VECTOR
                vis.add_data(visf,
                        [ 
                            ("e", e), 
                            ("h", h), 
                            ("true_e", true_e), 
                            ("true_h", true_h), 
                            ("mask_e", mask_e), 
                            ("mask_h", mask_h), 
                            ("mask_true_e", mask_true_e), 
                            ("mask_true_h", mask_true_h)],
                        time=t, step=step)
                visf.close()
                sub_timer.stop().submit()

                from hedge.tools import relative_error
                relerr_e_q.push_value(
                        relative_error(
                            discr.norm(mask_e-mask_true_e),
                            discr.norm(mask_true_e)))
                relerr_h_q.push_value(
                        relative_error(
                            discr.norm(mask_h-mask_true_h),
                            discr.norm(mask_true_h)))

                if write_output:
                    for outf_num, outf_true, evaluator in point_timeseries:
                        for outf, ev_h in zip([outf_num, outf_true],
                                [h, true_h]):
                            outf.write("%g\t%g\n" % (t, op.mu*evaluator(ev_h[1])))
                            outf.flush()

            fields = stepper(fields, t, dt, rhs)

    finally:
        if write_output:
            vis.close()

        logmgr.save()
        discr.close()
Beispiel #10
0
def main(write_output=True, flux_type_arg="upwind"):
    from hedge.tools import mem_checkpoint
    from math import sin, cos, pi, sqrt
    from math import floor

    from hedge.backends import guess_run_context
    rcon = guess_run_context()

    def f(x):
        return sin(pi * x)

    def u_analytic(x, el, t):
        return f((-numpy.dot(v, x) / norm_v + t * norm_v))

    def boundary_tagger(vertices, el, face_nr, all_v):
        if numpy.dot(el.face_normals[face_nr], v) < 0:
            return ["inflow"]
        else:
            return ["outflow"]

    dim = 2

    if dim == 1:
        v = numpy.array([1])
        if rcon.is_head_rank:
            from hedge.mesh.generator import make_uniform_1d_mesh
            mesh = make_uniform_1d_mesh(0, 2, 10, periodic=True)
    elif dim == 2:
        v = numpy.array([2, 0])
        if rcon.is_head_rank:
            from hedge.mesh.generator import make_disk_mesh
            mesh = make_disk_mesh(boundary_tagger=boundary_tagger)
    elif dim == 3:
        v = numpy.array([0, 0, 1])
        if rcon.is_head_rank:
            from hedge.mesh.generator import make_cylinder_mesh, make_ball_mesh, make_box_mesh

            mesh = make_cylinder_mesh(max_volume=0.04,
                                      height=2,
                                      boundary_tagger=boundary_tagger,
                                      periodic=False,
                                      radial_subdivisions=32)
    else:
        raise RuntimeError, "bad number of dimensions"

    norm_v = la.norm(v)

    if rcon.is_head_rank:
        mesh_data = rcon.distribute_mesh(mesh)
    else:
        mesh_data = rcon.receive_mesh()

    if dim != 1:
        mesh_data = mesh_data.reordered_by("cuthill")

    discr = rcon.make_discretization(mesh_data, order=4)
    vis_discr = discr

    from hedge.visualization import VtkVisualizer
    if write_output:
        vis = VtkVisualizer(vis_discr, rcon, "fld")

    # operator setup ----------------------------------------------------------
    from hedge.data import \
            ConstantGivenFunction, \
            TimeConstantGivenFunction, \
            TimeDependentGivenFunction
    from hedge.models.advection import StrongAdvectionOperator, WeakAdvectionOperator
    op = WeakAdvectionOperator(v,
                               inflow_u=TimeDependentGivenFunction(u_analytic),
                               flux_type=flux_type_arg)

    u = discr.interpolate_volume_function(lambda x, el: u_analytic(x, el, 0))

    # timestep setup ----------------------------------------------------------
    from hedge.timestep.runge_kutta import LSRK4TimeStepper
    stepper = LSRK4TimeStepper()

    if rcon.is_head_rank:
        print "%d elements" % len(discr.mesh.elements)

    # diagnostics setup -------------------------------------------------------
    from pytools.log import LogManager, \
            add_general_quantities, \
            add_simulation_quantities, \
            add_run_info

    if write_output:
        log_file_name = "advection.dat"
    else:
        log_file_name = None

    logmgr = LogManager(log_file_name, "w", rcon.communicator)
    add_run_info(logmgr)
    add_general_quantities(logmgr)
    add_simulation_quantities(logmgr)
    discr.add_instrumentation(logmgr)

    stepper.add_instrumentation(logmgr)

    from hedge.log import Integral, LpNorm
    u_getter = lambda: u
    logmgr.add_quantity(Integral(u_getter, discr, name="int_u"))
    logmgr.add_quantity(LpNorm(u_getter, discr, p=1, name="l1_u"))
    logmgr.add_quantity(LpNorm(u_getter, discr, name="l2_u"))

    logmgr.add_watches(["step.max", "t_sim.max", "l2_u", "t_step.max"])

    # timestep loop -----------------------------------------------------------
    rhs = op.bind(discr)

    try:
        from hedge.timestep import times_and_steps
        step_it = times_and_steps(final_time=3,
                                  logmgr=logmgr,
                                  max_dt_getter=lambda t: op.estimate_timestep(
                                      discr, stepper=stepper, t=t, fields=u))

        for step, t, dt in step_it:
            if step % 5 == 0 and write_output:
                visf = vis.make_file("fld-%04d" % step)
                vis.add_data(visf, [
                    ("u", discr.convert_volume(u, kind="numpy")),
                ],
                             time=t,
                             step=step)
                visf.close()

            u = stepper(u, t, dt, rhs)

        true_u = discr.interpolate_volume_function(
            lambda x, el: u_analytic(x, el, t))
        print discr.norm(u - true_u)
        assert discr.norm(u - true_u) < 1e-2
    finally:
        if write_output:
            vis.close()

        logmgr.close()
        discr.close()
Beispiel #11
0
                                  periodicity=(True, True),
                                  subdivisions=(11, 5),
                                  max_area=(pi * 2) / (11 * 5 * 2))

    if rcon.is_head_rank:
        mesh_data = rcon.distribute_mesh(mesh)
    else:
        mesh_data = rcon.receive_mesh()

    discr = rcon.make_discretization(mesh_data,
                                     order=order,
                                     quad_min_degrees={"quad": 3 * order})

    if write_output:
        from hedge.visualization import VtkVisualizer
        vis = VtkVisualizer(discr, rcon, "fld")

    # operator setup ----------------------------------------------------------
    from hedge.second_order import IPDGSecondDerivative

    from hedge.models.burgers import BurgersOperator
    op = BurgersOperator(mesh.dimensions,
                         viscosity_scheme=IPDGSecondDerivative())

    if rcon.is_head_rank:
        print "%d elements" % len(discr.mesh.elements)

    # exact solution ----------------------------------------------------------
    import pymbolic
    var = pymbolic.var
Beispiel #12
0
def main(write_output=True,
        flux_type_arg="upwind", dtype=np.float64, debug=[]):
    from math import sin, cos, pi, exp, sqrt  # noqa

    from hedge.backends import guess_run_context
    rcon = guess_run_context()

    if rcon.is_head_rank:
        from hedge.mesh.reader.gmsh import generate_gmsh
        mesh = generate_gmsh(GEOMETRY, 2,
                allow_internal_boundaries=True,
                force_dimension=2)

        print "%d elements" % len(mesh.elements)
        mesh_data = rcon.distribute_mesh(mesh)
    else:
        mesh_data = rcon.receive_mesh()

    discr = rcon.make_discretization(mesh_data, order=4, debug=debug,
            default_scalar_type=dtype)
    from hedge.timestep.runge_kutta import LSRK4TimeStepper
    stepper = LSRK4TimeStepper(dtype=dtype)

    from hedge.visualization import VtkVisualizer
    if write_output:
        vis = VtkVisualizer(discr, rcon, "fld")

    source_center = 0
    source_width = 0.05
    source_omega = 3

    import hedge.optemplate as sym
    sym_x = sym.nodes(2)
    sym_source_center_dist = sym_x - source_center

    from hedge.models.wave import StrongWaveOperator
    op = StrongWaveOperator(-1, discr.dimensions,
            source_f=
            sym.CFunction("sin")(source_omega*sym.ScalarParameter("t"))
            * sym.CFunction("exp")(
                -np.dot(sym_source_center_dist, sym_source_center_dist)
                / source_width**2),
            dirichlet_tag="boundary",
            neumann_tag=TAG_NONE,
            radiation_tag=TAG_NONE,
            flux_type=flux_type_arg
            )

    from hedge.tools import join_fields
    fields = join_fields(discr.volume_zeros(dtype=dtype),
            [discr.volume_zeros(dtype=dtype) for i in range(discr.dimensions)])

    # diagnostics setup -------------------------------------------------------
    from pytools.log import LogManager, \
            add_general_quantities, \
            add_simulation_quantities, \
            add_run_info

    if write_output:
        log_file_name = "wiggly.dat"
    else:
        log_file_name = None

    logmgr = LogManager(log_file_name, "w", rcon.communicator)
    add_run_info(logmgr)
    add_general_quantities(logmgr)
    add_simulation_quantities(logmgr)
    discr.add_instrumentation(logmgr)

    stepper.add_instrumentation(logmgr)

    logmgr.add_watches(["step.max", "t_sim.max", "t_step.max"])

    # timestep loop -----------------------------------------------------------
    rhs = op.bind(discr)
    try:
        from hedge.timestep import times_and_steps
        step_it = times_and_steps(
                final_time=4, logmgr=logmgr,
                max_dt_getter=lambda t: op.estimate_timestep(discr,
                    stepper=stepper, t=t, fields=fields))

        for step, t, dt in step_it:
            if step % 10 == 0 and write_output:
                visf = vis.make_file("fld-%04d" % step)

                vis.add_data(visf,
                        [
                            ("u", fields[0]),
                            ("v", fields[1:]),
                        ],
                        time=t,
                        step=step)
                visf.close()

            fields = stepper(fields, t, dt, rhs)

        assert discr.norm(fields) < 1
        assert fields[0].dtype == dtype

    finally:
        if write_output:
            vis.close()

        logmgr.close()
        discr.close()
Beispiel #13
0
def main(write_output=True, \
        dir_tag=TAG_NONE, \
        neu_tag=TAG_NONE,\
        rad_tag=TAG_ALL,
        flux_type_arg="upwind"):
    from math import sin, cos, pi, exp, sqrt

    from hedge.backends import guess_run_context
    rcon = guess_run_context()

    dim = 2

    if dim == 1:
        if rcon.is_head_rank:
            from hedge.mesh.generator import make_uniform_1d_mesh
            mesh = make_uniform_1d_mesh(-10, 10, 500)
    elif dim == 2:
        from hedge.mesh.generator import make_rect_mesh
        if rcon.is_head_rank:
            mesh = make_rect_mesh(a=(-1,-1),b=(1,1),max_area=0.003)
    elif dim == 3:
        if rcon.is_head_rank:
            from hedge.mesh.generator import make_ball_mesh
            mesh = make_ball_mesh(max_volume=0.0005)
    else:
        raise RuntimeError, "bad number of dimensions"

    if rcon.is_head_rank:
        print "%d elements" % len(mesh.elements)
        mesh_data = rcon.distribute_mesh(mesh)
    else:
        mesh_data = rcon.receive_mesh()

    discr = rcon.make_discretization(mesh_data, order=4)

    from hedge.timestep import RK4TimeStepper
    stepper = RK4TimeStepper()

    from hedge.visualization import VtkVisualizer
    if write_output:
        vis = VtkVisualizer(discr, rcon, "fld")

    def source_u(x, el):
        x = x - numpy.array([0.7, 0.4])
        return exp(-numpy.dot(x, x)*256)

    def c_speed(x, el):
        if la.norm(x) < 0.4:
            return 1
        else:
            return 0.5

    from hedge.models.wave import VariableVelocityStrongWaveOperator
    from hedge.data import \
            TimeIntervalGivenFunction, \
            make_tdep_given
    from hedge.mesh import TAG_ALL, TAG_NONE
    op = VariableVelocityStrongWaveOperator(
            make_tdep_given(c_speed),
            discr.dimensions, 
            source=TimeIntervalGivenFunction(
                make_tdep_given(source_u),
                0, 0.1),
            dirichlet_tag=dir_tag,
            neumann_tag=neu_tag,
            radiation_tag=rad_tag,
            flux_type=flux_type_arg
            )

    from hedge.tools import join_fields
    fields = join_fields(discr.volume_zeros(),
            [discr.volume_zeros() for i in range(discr.dimensions)])

    # diagnostics setup -------------------------------------------------------
    from pytools.log import LogManager, \
            add_general_quantities, \
            add_simulation_quantities, \
            add_run_info

    if write_output:
        log_file_name = "wave.dat"
    else:
        log_file_name = None

    logmgr = LogManager(log_file_name, "w", rcon.communicator)
    add_run_info(logmgr)
    add_general_quantities(logmgr)
    add_simulation_quantities(logmgr)
    discr.add_instrumentation(logmgr)

    from pytools.log import IntervalTimer
    vis_timer = IntervalTimer("t_vis", "Time spent visualizing")
    logmgr.add_quantity(vis_timer)
    stepper.add_instrumentation(logmgr)

    from hedge.log import Integral, LpNorm
    u_getter = lambda: fields[0]
    logmgr.add_quantity(LpNorm(u_getter, discr, 1, name="l1_u"))
    logmgr.add_quantity(LpNorm(u_getter, discr, name="l2_u"))

    logmgr.add_watches(["step.max", "t_sim.max", "l2_u", "t_step.max"])

    # timestep loop -----------------------------------------------------------
    rhs = op.bind(discr)
    try:
        dt = op.estimate_timestep(discr, stepper=stepper, fields=fields)
        if flux_type_arg == "central":
            dt *= 0.25

        from hedge.timestep import times_and_steps
        step_it = times_and_steps(final_time=3, logmgr=logmgr,
                max_dt_getter=lambda t: dt)

        for step, t, dt in step_it:
            if step % 10 == 0 and write_output:
                visf = vis.make_file("fld-%04d" % step)

                vis.add_data(visf,
                        [
                            ("u", fields[0]),
                            ("v", fields[1:]), 
                            ("c", op.c.volume_interpolant(0, discr)), 
                        ],
                        time=t,
                        step=step)
                visf.close()

            fields = stepper(fields, t, dt, rhs)

        assert discr.norm(fields) < 1
    finally:
        if write_output:
            vis.close()

        logmgr.close()
        discr.close()
Beispiel #14
0
def main(write_output=True,
        dir_tag=TAG_NONE, neu_tag=TAG_NONE, rad_tag=TAG_ALL,
        flux_type_arg="upwind", dtype=np.float64, debug=[]):
    from math import sin, cos, pi, exp, sqrt  # noqa

    from hedge.backends import guess_run_context
    rcon = guess_run_context()

    dim = 2

    if dim == 1:
        if rcon.is_head_rank:
            from hedge.mesh.generator import make_uniform_1d_mesh
            mesh = make_uniform_1d_mesh(-10, 10, 500)
    elif dim == 2:
        from hedge.mesh.generator import make_rect_mesh
        if rcon.is_head_rank:
            mesh = make_rect_mesh(a=(-0.5, -0.5), b=(0.5, 0.5), max_area=0.008)
    elif dim == 3:
        if rcon.is_head_rank:
            from hedge.mesh.generator import make_ball_mesh
            mesh = make_ball_mesh(max_volume=0.0005)
    else:
        raise RuntimeError("bad number of dimensions")

    if rcon.is_head_rank:
        print "%d elements" % len(mesh.elements)
        mesh_data = rcon.distribute_mesh(mesh)
    else:
        mesh_data = rcon.receive_mesh()

    from hedge.timestep.runge_kutta import LSRK4TimeStepper
    stepper = LSRK4TimeStepper(dtype=dtype)

    from hedge.models.wave import StrongWaveOperator
    from hedge.mesh import TAG_ALL, TAG_NONE  # noqa

    source_center = np.array([0.1, 0.22])
    source_width = 0.05
    source_omega = 3

    import hedge.optemplate as sym
    sym_x = sym.nodes(2)
    sym_source_center_dist = sym_x - source_center

    op = StrongWaveOperator(-1, dim,
            source_f=
            sym.CFunction("sin")(source_omega*sym.ScalarParameter("t"))
            * sym.CFunction("exp")(
                -np.dot(sym_source_center_dist, sym_source_center_dist)
                / source_width**2),
            dirichlet_tag=dir_tag,
            neumann_tag=neu_tag,
            radiation_tag=rad_tag,
            flux_type=flux_type_arg
            )

    discr = rcon.make_discretization(mesh_data, order=4, debug=debug,
            default_scalar_type=dtype,
            tune_for=op.op_template())

    from hedge.visualization import VtkVisualizer
    if write_output:
        vis = VtkVisualizer(discr, rcon, "fld")

    from hedge.tools import join_fields
    fields = join_fields(discr.volume_zeros(dtype=dtype),
            [discr.volume_zeros(dtype=dtype) for i in range(discr.dimensions)])

    # {{{ diagnostics setup

    from pytools.log import LogManager, \
            add_general_quantities, \
            add_simulation_quantities, \
            add_run_info

    if write_output:
        log_file_name = "wave.dat"
    else:
        log_file_name = None

    logmgr = LogManager(log_file_name, "w", rcon.communicator)
    add_run_info(logmgr)
    add_general_quantities(logmgr)
    add_simulation_quantities(logmgr)
    discr.add_instrumentation(logmgr)

    from pytools.log import IntervalTimer
    vis_timer = IntervalTimer("t_vis", "Time spent visualizing")
    logmgr.add_quantity(vis_timer)
    stepper.add_instrumentation(logmgr)

    from hedge.log import LpNorm
    u_getter = lambda: fields[0]
    logmgr.add_quantity(LpNorm(u_getter, discr, 1, name="l1_u"))
    logmgr.add_quantity(LpNorm(u_getter, discr, name="l2_u"))

    logmgr.add_watches(["step.max", "t_sim.max", "l2_u", "t_step.max"])

    # }}}

    # {{{ timestep loop

    rhs = op.bind(discr)
    try:
        from hedge.timestep import times_and_steps
        step_it = times_and_steps(
                final_time=4, logmgr=logmgr,
                max_dt_getter=lambda t: op.estimate_timestep(discr,
                    stepper=stepper, t=t, fields=fields))

        for step, t, dt in step_it:
            if step % 10 == 0 and write_output:
                visf = vis.make_file("fld-%04d" % step)

                vis.add_data(visf,
                        [
                            ("u", discr.convert_volume(fields[0], kind="numpy")),
                            ("v", discr.convert_volume(fields[1:], kind="numpy")),
                        ],
                        time=t,
                        step=step)
                visf.close()

            fields = stepper(fields, t, dt, rhs)

        assert discr.norm(fields) < 1
        assert fields[0].dtype == dtype

    finally:
        if write_output:
            vis.close()

        logmgr.close()
        discr.close()
Beispiel #15
0
def main(final_time=1, write_output=False):
    from hedge.backends import guess_run_context
    rcon = guess_run_context()

    from hedge.tools import EOCRecorder, to_obj_array
    eoc_rec = EOCRecorder()

    if rcon.is_head_rank:
        from hedge.mesh import make_box_mesh
        mesh = make_box_mesh((0,0,0), (10,10,10), max_volume=0.5)
        mesh_data = rcon.distribute_mesh(mesh)
    else:
        mesh_data = rcon.receive_mesh()

    for order in [3, 4, 5]:
        discr = rcon.make_discretization(mesh_data, order=order,
                        default_scalar_type=numpy.float64)

        from hedge.visualization import SiloVisualizer, VtkVisualizer
        vis = VtkVisualizer(discr, rcon, "sinewave-%d" % order)
        #vis = SiloVisualizer(discr, rcon)

        sinewave = SineWave()
        fields = sinewave.volume_interpolant(0, discr)
        gamma, mu, prandtl, spec_gas_const = sinewave.properties()

        from hedge.mesh import TAG_ALL
        from hedge.models.gas_dynamics import GasDynamicsOperator
        op = GasDynamicsOperator(dimensions=mesh.dimensions, gamma=gamma, mu=mu,
                prandtl=prandtl, spec_gas_const=spec_gas_const,
                bc_inflow=sinewave, bc_outflow=sinewave, bc_noslip=sinewave,
                inflow_tag=TAG_ALL, source=None)

        euler_ex = op.bind(discr)

        max_eigval = [0]
        def rhs(t, q):
            ode_rhs, speed = euler_ex(t, q)
            max_eigval[0] = speed
            return ode_rhs
        rhs(0, fields)

        if rcon.is_head_rank:
            print "---------------------------------------------"
            print "order %d" % order
            print "---------------------------------------------"
            print "#elements=", len(mesh.elements)

        from hedge.timestep import RK4TimeStepper
        stepper = RK4TimeStepper()

        # diagnostics setup ---------------------------------------------------
        from pytools.log import LogManager, add_general_quantities, \
                add_simulation_quantities, add_run_info

        if write_output:
            log_name = ("euler-sinewave-%(order)d-%(els)d.dat"
                    % {"order":order, "els":len(mesh.elements)})
        else:
            log_name = False
        logmgr = LogManager(log_name, "w", rcon.communicator)
        add_run_info(logmgr)
        add_general_quantities(logmgr)
        add_simulation_quantities(logmgr)
        discr.add_instrumentation(logmgr)
        stepper.add_instrumentation(logmgr)

        logmgr.add_watches(["step.max", "t_sim.max", "t_step.max"])

        # timestep loop -------------------------------------------------------
        try:
            from hedge.timestep import times_and_steps
            step_it = times_and_steps(
                    final_time=final_time, logmgr=logmgr,
                    max_dt_getter=lambda t: op.estimate_timestep(discr,
                        stepper=stepper, t=t, max_eigenvalue=max_eigval[0]))

            for step, t, dt in step_it:
                #if step % 10 == 0:
                if write_output:
                    visf = vis.make_file("sinewave-%d-%04d" % (order, step))

                    #from pyvisfile.silo import DB_VARTYPE_VECTOR
                    vis.add_data(visf,
                            [
                                ("rho", discr.convert_volume(op.rho(fields), kind="numpy")),
                                ("e", discr.convert_volume(op.e(fields), kind="numpy")),
                                ("rho_u", discr.convert_volume(op.rho_u(fields), kind="numpy")),
                                ("u", discr.convert_volume(op.u(fields), kind="numpy")),

                                #("true_rho", op.rho(true_fields)),
                                #("true_e", op.e(true_fields)),
                                #("true_rho_u", op.rho_u(true_fields)),
                                #("true_u", op.u(true_fields)),

                                #("rhs_rho", op.rho(rhs_fields)),
                                #("rhs_e", op.e(rhs_fields)),
                                #("rhs_rho_u", op.rho_u(rhs_fields)),
                                ],
                            #expressions=[
                                #("diff_rho", "rho-true_rho"),
                                #("diff_e", "e-true_e"),
                                #("diff_rho_u", "rho_u-true_rho_u", DB_VARTYPE_VECTOR),

                                #("p", "0.4*(e- 0.5*(rho_u*u))"),
                                #],
                            time=t, step=step
                            )
                    visf.close()

                fields = stepper(fields, t, dt, rhs)

        finally:
            vis.close()
            logmgr.close()
            discr.close()

        true_fields = sinewave.volume_interpolant(t, discr)
        eoc_rec.add_data_point(order, discr.norm(fields-true_fields))
        print
        print eoc_rec.pretty_print("P.Deg.", "L2 Error")
Beispiel #16
0
def main(write_output=True):
    from math import sqrt, pi, exp
    from os.path import join

    from hedge.backends import guess_run_context
    rcon = guess_run_context()

    epsilon0 = 8.8541878176e-12 # C**2 / (N m**2)
    mu0 = 4*pi*1e-7 # N/A**2.
    epsilon = 1*epsilon0
    mu = 1*mu0

    output_dir = "maxwell-2d"
    import os
    if not os.access(output_dir, os.F_OK):
        os.makedirs(output_dir)
    
    from hedge.mesh.generator import make_disk_mesh
    mesh = make_disk_mesh(r=0.5, max_area=1e-3)

    if rcon.is_head_rank:
        mesh_data = rcon.distribute_mesh(mesh)
    else:
        mesh_data = rcon.receive_mesh()

    class CurrentSource:
        shape = (3,)

        def __call__(self, x, el):
            return [0,0,exp(-80*la.norm(x))]

    order = 3
    final_time = 1e-8
    discr = rcon.make_discretization(mesh_data, order=order,
            debug=["cuda_no_plan"])

    from hedge.visualization import VtkVisualizer
    if write_output:
        vis = VtkVisualizer(discr, rcon, join(output_dir, "em-%d" % order))

    if rcon.is_head_rank:
        print "order %d" % order
        print "#elements=", len(mesh.elements)

    from hedge.mesh import TAG_ALL, TAG_NONE
    from hedge.models.em import TMMaxwellOperator
    from hedge.data import make_tdep_given, TimeIntervalGivenFunction
    op = TMMaxwellOperator(epsilon, mu, flux_type=1,
            current=TimeIntervalGivenFunction(
                make_tdep_given(CurrentSource()), off_time=final_time/10),
            absorb_tag=TAG_ALL, pec_tag=TAG_NONE)
    fields = op.assemble_eh(discr=discr)

    from hedge.timestep import LSRK4TimeStepper
    stepper = LSRK4TimeStepper()
    from time import time
    last_tstep = time()
    t = 0

    # diagnostics setup ---------------------------------------------------
    from pytools.log import LogManager, add_general_quantities, \
            add_simulation_quantities, add_run_info

    if write_output:
        log_file_name = join(output_dir, "maxwell-%d.dat" % order)
    else:
        log_file_name = None

    logmgr = LogManager(log_file_name, "w", rcon.communicator)
    add_run_info(logmgr)
    add_general_quantities(logmgr)
    add_simulation_quantities(logmgr)
    discr.add_instrumentation(logmgr)
    stepper.add_instrumentation(logmgr)

    from pytools.log import IntervalTimer
    vis_timer = IntervalTimer("t_vis", "Time spent visualizing")
    logmgr.add_quantity(vis_timer)

    from hedge.log import EMFieldGetter, add_em_quantities
    field_getter = EMFieldGetter(discr, op, lambda: fields)
    add_em_quantities(logmgr, op, field_getter)

    logmgr.add_watches(["step.max", "t_sim.max", 
        ("W_field", "W_el+W_mag"), "t_step.max"])

    # timestep loop -------------------------------------------------------
    rhs = op.bind(discr)

    try:
        from hedge.timestep import times_and_steps
        step_it = times_and_steps(
                final_time=final_time, logmgr=logmgr,
                max_dt_getter=lambda t: op.estimate_timestep(discr,
                    stepper=stepper, t=t, fields=fields))

        for step, t, dt in step_it:
            if step % 10 == 0 and write_output:
                e, h = op.split_eh(fields)
                visf = vis.make_file(join(output_dir, "em-%d-%04d" % (order, step)))
                vis.add_data(visf,
                        [
                            ("e", discr.convert_volume(e, "numpy")),
                            ("h", discr.convert_volume(h, "numpy")),
                            ],
                        time=t, step=step
                        )
                visf.close()

            fields = stepper(fields, t, dt, rhs)

        assert discr.norm(fields) < 0.03
    finally:
        if write_output:
            vis.close()

        logmgr.close()
        discr.close()
Beispiel #17
0
def main(write_output=True, flux_type_arg="upwind"):
    from hedge.tools import mem_checkpoint
    from math import sin, cos, pi, sqrt
    from math import floor

    from hedge.backends import guess_run_context
    rcon = guess_run_context()

    def f(x):
        return sin(pi*x)

    def u_analytic(x, el, t):
        return f((-numpy.dot(v, x)/norm_v+t*norm_v))

    def boundary_tagger(vertices, el, face_nr, all_v):
        if numpy.dot(el.face_normals[face_nr], v) < 0:
            return ["inflow"]
        else:
            return ["outflow"]

    dim = 2

    if dim == 1:
        v = numpy.array([1])
        if rcon.is_head_rank:
            from hedge.mesh.generator import make_uniform_1d_mesh
            mesh = make_uniform_1d_mesh(0, 2, 10, periodic=True)
    elif dim == 2:
        v = numpy.array([2,0])
        if rcon.is_head_rank:
            from hedge.mesh.generator import make_disk_mesh
            mesh = make_disk_mesh(boundary_tagger=boundary_tagger)
    elif dim == 3:
        v = numpy.array([0,0,1])
        if rcon.is_head_rank:
            from hedge.mesh.generator import make_cylinder_mesh, make_ball_mesh, make_box_mesh

            mesh = make_cylinder_mesh(max_volume=0.04, height=2, boundary_tagger=boundary_tagger,
                    periodic=False, radial_subdivisions=32)
    else:
        raise RuntimeError, "bad number of dimensions"

    norm_v = la.norm(v)

    if rcon.is_head_rank:
        mesh_data = rcon.distribute_mesh(mesh)
    else:
        mesh_data = rcon.receive_mesh()

    if dim != 1:
        mesh_data = mesh_data.reordered_by("cuthill")

    discr = rcon.make_discretization(mesh_data, order=4)
    vis_discr = discr

    from hedge.visualization import VtkVisualizer
    if write_output:
        vis = VtkVisualizer(vis_discr, rcon, "fld")

    # operator setup ----------------------------------------------------------
    from hedge.data import \
            ConstantGivenFunction, \
            TimeConstantGivenFunction, \
            TimeDependentGivenFunction
    from hedge.models.advection import StrongAdvectionOperator, WeakAdvectionOperator
    op = WeakAdvectionOperator(v, 
            inflow_u=TimeDependentGivenFunction(u_analytic),
            flux_type=flux_type_arg)

    u = discr.interpolate_volume_function(lambda x, el: u_analytic(x, el, 0))

    # timestep setup ----------------------------------------------------------
    from hedge.timestep.runge_kutta import LSRK4TimeStepper
    stepper = LSRK4TimeStepper()

    if rcon.is_head_rank:
        print "%d elements" % len(discr.mesh.elements)

    # diagnostics setup -------------------------------------------------------
    from pytools.log import LogManager, \
            add_general_quantities, \
            add_simulation_quantities, \
            add_run_info

    if write_output:
        log_file_name = "advection.dat"
    else:
        log_file_name = None

    logmgr = LogManager(log_file_name, "w", rcon.communicator)
    add_run_info(logmgr)
    add_general_quantities(logmgr)
    add_simulation_quantities(logmgr)
    discr.add_instrumentation(logmgr)

    stepper.add_instrumentation(logmgr)

    from hedge.log import Integral, LpNorm
    u_getter = lambda: u
    logmgr.add_quantity(Integral(u_getter, discr, name="int_u"))
    logmgr.add_quantity(LpNorm(u_getter, discr, p=1, name="l1_u"))
    logmgr.add_quantity(LpNorm(u_getter, discr, name="l2_u"))

    logmgr.add_watches(["step.max", "t_sim.max", "l2_u", "t_step.max"])

    # timestep loop -----------------------------------------------------------
    rhs = op.bind(discr)

    try:
        from hedge.timestep import times_and_steps
        step_it = times_and_steps(
                final_time=3, logmgr=logmgr,
                max_dt_getter=lambda t: op.estimate_timestep(discr,
                    stepper=stepper, t=t, fields=u))

        for step, t, dt in step_it:
            if step % 5 == 0 and write_output:
                visf = vis.make_file("fld-%04d" % step)
                vis.add_data(visf, [ 
                    ("u", discr.convert_volume(u, kind="numpy")), 
                    ], time=t, step=step)
                visf.close()

            u = stepper(u, t, dt, rhs)

        true_u = discr.interpolate_volume_function(lambda x, el: u_analytic(x, el, t))
        print discr.norm(u-true_u)
        assert discr.norm(u-true_u) < 1e-2
    finally:
        if write_output:
            vis.close()

        logmgr.close()
        discr.close()
Beispiel #18
0
def main(write_output=True, order=6):
    from hedge.data import TimeConstantGivenFunction, \
            GivenFunction
    from os.path import join
    from hedge.backends import guess_run_context
    rcon = guess_run_context()

    dim = 3
    output_dir = "octahedron"
    
    import os
    if not os.access(output_dir, os.F_OK):
        os.makedirs(output_dir)

    if rcon.is_head_rank:
        from hedge.mesh.reader.gmsh import read_gmsh
        mesh = read_gmsh("octahedron.msh", 
                boundary_tagger=lambda x,y,z,w: ["traction"])

    if rcon.is_head_rank:
        print "%d elements" % len(mesh.elements)
        mesh_data = rcon.distribute_mesh(mesh)
    else:
        mesh_data = rcon.receive_mesh()

    class Displacement:
        shape = (3,)
        def __call__(self, x, el):
            R = x[0] + x[1] + x[2]
            return [-R/30, -R/30, -R/30]
    
    final_time = 3
    
    discr = rcon.make_discretization(mesh_data, order=order, 
            debug=[])

    from hedge.visualization import VtkVisualizer
    if write_output:
        vis = VtkVisualizer(discr, rcon, join(output_dir, "test-%d" % order))
        
    if rcon.is_head_rank:
        print "order %d" % order
        print "#elements=", len(mesh.elements)
 
    from hedge.mesh import TAG_NONE, TAG_ALL
    from hedge.models.solid_mechanics import SolidMechanicsOperator
    from hedge.models.solid_mechanics.constitutive_laws import NeoHookean
    
    material = NeoHookean(50, 10, 0.3)
    
    op = SolidMechanicsOperator(material, 
            init_displacement=GivenFunction(Displacement()),
            dimensions=discr.dimensions)
    fields = op.assemble_vars(discr=discr)
    
    from hedge.timestep import LSRK4TimeStepper
    stepper = LSRK4TimeStepper()
    from time import time
    last_tsep = time()
    t = 0

    # diagnostics setup -------------------------------------------------
    from pytools.log import LogManager, add_general_quantities, \
            add_simulation_quantities, add_run_info
    if write_output:
        log_file_name = join(output_dir, "oct-%d.dat" % order)
    else:
        log_file_name = None

    logmgr = LogManager(log_file_name, "w", rcon.communicator)
    add_run_info(logmgr)
    add_general_quantities(logmgr)
    add_simulation_quantities(logmgr)
    discr.add_instrumentation(logmgr)
    stepper.add_instrumentation(logmgr)

    from pytools.log import IntervalTimer
    vis_timer = IntervalTimer("t_vis", "Time spent visualizing")
    logmgr.add_quantity(vis_timer)
    logmgr.add_watches(["step.max", "t_sim.max", "t_step.max"])
    
    p_calc = op.bind_stress_calculator(discr)
    rhs = op.bind(discr)

    try:
        from hedge.timestep import times_and_steps
        step_it = times_and_steps(
                final_time=final_time, logmgr=logmgr,
                max_dt_getter=lambda t: op.estimate_timestep(discr,
                    stepper=stepper, t=t, fields=fields))

        for step, t, dt in step_it:
            u, v = op.split_vars(fields)
            P    = p_calc(u)
            if step % 5 == 0 and write_output:
                visf = vis.make_file(join(output_dir, "oct-%d-%04d" % (order, step)))
                vis.add_data(visf,
                    [
                        ("u", discr.convert_volume(u, "numpy")),
                        ("v", discr.convert_volume(v, "numpy")),
                        ("P", discr.convert_volume(P, "numpy"))
                        ],
                    time=t, step=step
                    )
                visf.close()
            
            fields = stepper(fields, t, dt, rhs)
    finally:
        if write_output:
            vis.close()
        logmgr.close()
        discr.close()
Beispiel #19
0
def main(write_output=True,
         flux_type_arg="central",
         use_quadrature=True,
         final_time=20):
    from math import sin, cos, pi, sqrt

    from hedge.backends import guess_run_context
    rcon = guess_run_context()

    # mesh setup --------------------------------------------------------------
    if rcon.is_head_rank:
        #from hedge.mesh.generator import make_disk_mesh
        #mesh = make_disk_mesh()
        from hedge.mesh.generator import make_rect_mesh
        mesh = make_rect_mesh(a=(-1, -1), b=(1, 1), max_area=0.008)

    if rcon.is_head_rank:
        mesh_data = rcon.distribute_mesh(mesh)
    else:
        mesh_data = rcon.receive_mesh()

    # space-time-dependent-velocity-field -------------------------------------
    # simple vortex
    class TimeDependentVField:
        """ `TimeDependentVField` is a callable expecting `(x, t)` representing space and time

        `x` is of the length of the spatial dimension and `t` is the time."""
        shape = (2, )

        def __call__(self, pt, el, t):
            x, y = pt
            # Correction-Factor to make the speed zero on the on the boundary
            #fac = (1-x**2)*(1-y**2)
            fac = 1.
            return numpy.array([-y * fac, x * fac]) * cos(pi * t)

    class VField:
        """ `VField` is a callable expecting `(x)` representing space

        `x` is of the length of the spatial dimension."""
        shape = (2, )

        def __call__(self, pt, el):
            x, y = pt
            # Correction-Factor to make the speed zero on the on the boundary
            #fac = (1-x**2)*(1-y**2)
            fac = 1.
            return numpy.array([-y * fac, x * fac])

    # space-time-dependent State BC (optional)-----------------------------------
    class TimeDependentBc_u:
        """ space and time dependent BC for state u"""
        def __call__(self, pt, el, t):
            x, y = pt
            if t <= 0.5:
                if x > 0:
                    return 1
                else:
                    return 0
            else:
                return 0

    class Bc_u:
        """ Only space dependent BC for state u"""
        def __call__(seld, pt, el):
            x, y = pt
            if x > 0:
                return 1
            else:
                return 0

    # operator setup ----------------------------------------------------------
    # In the operator setup it is possible to switch between a only space
    # dependent velocity field `VField` or a time and space dependent
    # `TimeDependentVField`.
    # For `TimeDependentVField`: advec_v=TimeDependentGivenFunction(VField())
    # For `VField`: advec_v=TimeConstantGivenFunction(GivenFunction(VField()))
    # Same for the Bc_u Function! If you don't define Bc_u then the BC for u = 0.

    from hedge.data import \
            ConstantGivenFunction, \
            TimeConstantGivenFunction, \
            TimeDependentGivenFunction, \
            GivenFunction
    from hedge.models.advection import VariableCoefficientAdvectionOperator
    op = VariableCoefficientAdvectionOperator(
        mesh.dimensions,
        #advec_v=TimeDependentGivenFunction(
        #    TimeDependentVField()),
        advec_v=TimeConstantGivenFunction(GivenFunction(VField())),
        #bc_u_f=TimeDependentGivenFunction(
        #    TimeDependentBc_u()),
        bc_u_f=TimeConstantGivenFunction(GivenFunction(Bc_u())),
        flux_type=flux_type_arg)

    # discretization setup ----------------------------------------------------
    order = 5
    if use_quadrature:
        quad_min_degrees = {"quad": 3 * order}
    else:
        quad_min_degrees = {}

    discr = rcon.make_discretization(
        mesh_data,
        order=order,
        default_scalar_type=numpy.float64,
        debug=["cuda_no_plan"],
        quad_min_degrees=quad_min_degrees,
        tune_for=op.op_template(),
    )
    vis_discr = discr

    # visualization setup -----------------------------------------------------
    from hedge.visualization import VtkVisualizer
    if write_output:
        vis = VtkVisualizer(vis_discr, rcon, "fld")

    # initial condition -------------------------------------------------------
    if True:

        def initial(pt, el):
            # Gauss pulse
            from math import exp
            x = (pt - numpy.array([0.3, 0.5])) * 8
            return exp(-numpy.dot(x, x))
    else:

        def initial(pt, el):
            # Rectangle
            x, y = pt
            if abs(x) < 0.5 and abs(y) < 0.2:
                return 2
            else:
                return 1

    u = discr.interpolate_volume_function(initial)

    # timestep setup ----------------------------------------------------------
    from hedge.timestep.runge_kutta import LSRK4TimeStepper
    stepper = LSRK4TimeStepper(
        vector_primitive_factory=discr.get_vector_primitive_factory())

    if rcon.is_head_rank:
        print "%d elements" % len(discr.mesh.elements)

    # filter setup-------------------------------------------------------------
    from hedge.discretization import ExponentialFilterResponseFunction
    from hedge.optemplate.operators import FilterOperator
    mode_filter = FilterOperator(
            ExponentialFilterResponseFunction(min_amplification=0.9,order=4))\
                    .bind(discr)

    # diagnostics setup -------------------------------------------------------
    from pytools.log import LogManager, \
            add_general_quantities, \
            add_simulation_quantities, \
            add_run_info

    if write_output:
        log_file_name = "space-dep.dat"
    else:
        log_file_name = None

    logmgr = LogManager(log_file_name, "w", rcon.communicator)
    add_run_info(logmgr)
    add_general_quantities(logmgr)
    add_simulation_quantities(logmgr)
    discr.add_instrumentation(logmgr)

    stepper.add_instrumentation(logmgr)

    from hedge.log import Integral, LpNorm
    u_getter = lambda: u
    logmgr.add_quantity(Integral(u_getter, discr, name="int_u"))
    logmgr.add_quantity(LpNorm(u_getter, discr, p=1, name="l1_u"))
    logmgr.add_quantity(LpNorm(u_getter, discr, name="l2_u"))

    logmgr.add_watches(["step.max", "t_sim.max", "l2_u", "t_step.max"])

    # Initialize v for data output:
    v = op.advec_v.volume_interpolant(0, discr)

    # timestep loop -----------------------------------------------------------
    rhs = op.bind(discr)
    try:
        from hedge.timestep import times_and_steps
        step_it = times_and_steps(final_time=final_time,
                                  logmgr=logmgr,
                                  max_dt_getter=lambda t: op.estimate_timestep(
                                      discr, stepper=stepper, t=t, fields=u))

        for step, t, dt in step_it:
            if step % 10 == 0 and write_output:
                visf = vis.make_file("fld-%04d" % step)
                vis.add_data(visf,
                             [("u", discr.convert_volume(u, kind="numpy")),
                              ("v", discr.convert_volume(v, kind="numpy"))],
                             time=t,
                             step=step)
                visf.close()

            u = stepper(u, t, dt, rhs)

            # We're feeding in a discontinuity through the BCs.
            # Quadrature does not help with shock capturing--
            # therefore we do need to filter here, regardless
            # of whether quadrature is enabled.
            u = mode_filter(u)

        assert discr.norm(u) < 10

    finally:
        if write_output:
            vis.close()

        logmgr.close()
        discr.close()
Beispiel #20
0
def main(write_output=True,
         allow_features=None,
         flux_type_arg=1,
         bdry_flux_type_arg=None,
         extra_discr_args={}):
    from hedge.mesh.generator import make_cylinder_mesh, make_box_mesh
    from hedge.tools import EOCRecorder, to_obj_array
    from math import sqrt, pi  # noqa
    from analytic_solutions import (  # noqa
        RealPartAdapter, SplitComplexAdapter, CylindricalFieldAdapter,
        CylindricalCavityMode, RectangularWaveguideMode, RectangularCavityMode)
    from hedge.models.em import MaxwellOperator

    logging.basicConfig(level=logging.DEBUG)

    from hedge.backends import guess_run_context
    rcon = guess_run_context(allow_features)

    epsilon0 = 8.8541878176e-12  # C**2 / (N m**2)
    mu0 = 4 * pi * 1e-7  # N/A**2.
    epsilon = 1 * epsilon0
    mu = 1 * mu0

    eoc_rec = EOCRecorder()

    cylindrical = False
    periodic = False

    if cylindrical:
        R = 1
        d = 2
        mode = CylindricalCavityMode(m=1,
                                     n=1,
                                     p=1,
                                     radius=R,
                                     height=d,
                                     epsilon=epsilon,
                                     mu=mu)
        # r_sol = CylindricalFieldAdapter(RealPartAdapter(mode))
        # c_sol = SplitComplexAdapter(CylindricalFieldAdapter(mode))

        if rcon.is_head_rank:
            mesh = make_cylinder_mesh(radius=R, height=d, max_volume=0.01)
    else:
        if periodic:
            mode = RectangularWaveguideMode(epsilon, mu, (3, 2, 1))
            periodicity = (False, False, True)
        else:
            periodicity = None
        mode = RectangularCavityMode(epsilon, mu, (1, 2, 2))

        if rcon.is_head_rank:
            mesh = make_box_mesh(max_volume=0.001, periodicity=periodicity)

    if rcon.is_head_rank:
        mesh_data = rcon.distribute_mesh(mesh)
    else:
        mesh_data = rcon.receive_mesh()

    for order in [4, 5, 6]:
        #for order in [1,2,3,4,5,6]:
        extra_discr_args.setdefault("debug", []).extend(
            ["cuda_no_plan", "cuda_dump_kernels"])

        op = MaxwellOperator(epsilon,
                             mu,
                             flux_type=flux_type_arg,
                             bdry_flux_type=bdry_flux_type_arg)

        discr = rcon.make_discretization(mesh_data,
                                         order=order,
                                         tune_for=op.op_template(),
                                         **extra_discr_args)

        from hedge.visualization import VtkVisualizer
        if write_output:
            vis = VtkVisualizer(discr, rcon, "em-%d" % order)

        mode.set_time(0)

        def get_true_field():
            return discr.convert_volume(to_obj_array(
                mode(discr).real.astype(discr.default_scalar_type).copy()),
                                        kind=discr.compute_kind)

        fields = get_true_field()

        if rcon.is_head_rank:
            print "---------------------------------------------"
            print "order %d" % order
            print "---------------------------------------------"
            print "#elements=", len(mesh.elements)

        from hedge.timestep.runge_kutta import LSRK4TimeStepper
        stepper = LSRK4TimeStepper(dtype=discr.default_scalar_type, rcon=rcon)
        #from hedge.timestep.dumka3 import Dumka3TimeStepper
        #stepper = Dumka3TimeStepper(3, dtype=discr.default_scalar_type, rcon=rcon)

        # {{{ diagnostics setup

        from pytools.log import LogManager, add_general_quantities, \
                add_simulation_quantities, add_run_info

        if write_output:
            log_file_name = "maxwell-%d.dat" % order
        else:
            log_file_name = None

        logmgr = LogManager(log_file_name, "w", rcon.communicator)

        add_run_info(logmgr)
        add_general_quantities(logmgr)
        add_simulation_quantities(logmgr)
        discr.add_instrumentation(logmgr)
        stepper.add_instrumentation(logmgr)

        from pytools.log import IntervalTimer
        vis_timer = IntervalTimer("t_vis", "Time spent visualizing")
        logmgr.add_quantity(vis_timer)

        from hedge.log import EMFieldGetter, add_em_quantities
        field_getter = EMFieldGetter(discr, op, lambda: fields)
        add_em_quantities(logmgr, op, field_getter)

        logmgr.add_watches(
            ["step.max", "t_sim.max", ("W_field", "W_el+W_mag"), "t_step.max"])

        # }}}

        # {{{ timestep loop

        rhs = op.bind(discr)
        final_time = 0.5e-9

        try:
            from hedge.timestep import times_and_steps
            step_it = times_and_steps(
                final_time=final_time,
                logmgr=logmgr,
                max_dt_getter=lambda t: op.estimate_timestep(
                    discr, stepper=stepper, t=t, fields=fields))

            for step, t, dt in step_it:
                if step % 50 == 0 and write_output:
                    sub_timer = vis_timer.start_sub_timer()
                    e, h = op.split_eh(fields)
                    visf = vis.make_file("em-%d-%04d" % (order, step))
                    vis.add_data(visf, [
                        ("e", discr.convert_volume(e, kind="numpy")),
                        ("h", discr.convert_volume(h, kind="numpy")),
                    ],
                                 time=t,
                                 step=step)
                    visf.close()
                    sub_timer.stop().submit()

                fields = stepper(fields, t, dt, rhs)

            mode.set_time(final_time)

            eoc_rec.add_data_point(order,
                                   discr.norm(fields - get_true_field()))

        finally:
            if write_output:
                vis.close()

            logmgr.close()
            discr.close()

        if rcon.is_head_rank:
            print
            print eoc_rec.pretty_print("P.Deg.", "L2 Error")

        # }}}

    assert eoc_rec.estimate_order_of_convergence()[0, 1] > 6
Beispiel #21
0
def main(write_output=True, flux_type_arg="upwind", 
        #case = CenteredStationaryTestCase(),
        #case = OffCenterStationaryTestCase(),
        #case = OffCenterMigratingTestCase(),
        case = ExactTestCase(),
        ):
    from hedge.backends import guess_run_context
    rcon = guess_run_context()

    order = 3
    if rcon.is_head_rank:
        if True:
            from hedge.mesh.generator import make_uniform_1d_mesh
            mesh = make_uniform_1d_mesh(case.a, case.b, 20, periodic=True)
        else:
            from hedge.mesh.generator import make_rect_mesh
            print (pi*2)/(11*5*2)
            mesh = make_rect_mesh((-pi, -1), (pi, 1),
                    periodicity=(True, True),
                    subdivisions=(11,5),
                    max_area=(pi*2)/(11*5*2)
                    )

    if rcon.is_head_rank:
        mesh_data = rcon.distribute_mesh(mesh)
    else:
        mesh_data = rcon.receive_mesh()

    discr = rcon.make_discretization(mesh_data, order=order,
            quad_min_degrees={"quad": 3*order})

    if write_output:
        from hedge.visualization import VtkVisualizer
        vis = VtkVisualizer(discr, rcon, "fld")

    # operator setup ----------------------------------------------------------
    from hedge.second_order import IPDGSecondDerivative

    from hedge.models.burgers import BurgersOperator
    op = BurgersOperator(mesh.dimensions,
            viscosity_scheme=IPDGSecondDerivative())

    if rcon.is_head_rank:
        print "%d elements" % len(discr.mesh.elements)

    # exact solution ----------------------------------------------------------
    import pymbolic
    var = pymbolic.var

    u = discr.interpolate_volume_function(lambda x, el: case.u0(x[0]))

    # diagnostics setup -------------------------------------------------------
    from pytools.log import LogManager, \
            add_general_quantities, \
            add_simulation_quantities, \
            add_run_info

    if write_output:
        log_file_name = "burgers.dat"
    else:
        log_file_name = None

    logmgr = LogManager(log_file_name, "w", rcon.communicator)
    add_run_info(logmgr)
    add_general_quantities(logmgr)
    add_simulation_quantities(logmgr)
    discr.add_instrumentation(logmgr)

    from hedge.log import LpNorm
    u_getter = lambda: u
    logmgr.add_quantity(LpNorm(u_getter, discr, p=1, name="l1_u"))

    logmgr.add_watches(["step.max", "t_sim.max", "l1_u", "t_step.max"])

    # timestep loop -----------------------------------------------------------
    rhs = op.bind(discr)

    from hedge.timestep.runge_kutta import ODE45TimeStepper, LSRK4TimeStepper
    stepper = ODE45TimeStepper()

    stepper.add_instrumentation(logmgr)

    try:
        from hedge.timestep import times_and_steps
        # for visc=0.01
        #stab_fac = 0.1 # RK4
        #stab_fac = 1.6 # dumka3(3), central
        #stab_fac = 3 # dumka3(4), central

        #stab_fac = 0.01 # RK4
        stab_fac = 0.2 # dumka3(3), central
        #stab_fac = 3 # dumka3(4), central

        dt = stab_fac*op.estimate_timestep(discr,
                stepper=LSRK4TimeStepper(), t=0, fields=u)

        step_it = times_and_steps(
                final_time=case.final_time, logmgr=logmgr, max_dt_getter=lambda t: dt)
        from hedge.optemplate import  InverseVandermondeOperator
        inv_vdm = InverseVandermondeOperator().bind(discr)

        for step, t, dt in step_it:
            if step % 3 == 0 and write_output:
                if hasattr(case, "u_exact"):
                    extra_fields = [
                            ("u_exact",
                                discr.interpolate_volume_function(
                                    lambda x, el: case.u_exact(x[0], t)))]
                else:
                    extra_fields = []

                visf = vis.make_file("fld-%04d" % step)
                vis.add_data(visf, [
                    ("u", u),
                    ] + extra_fields,
                    time=t,
                    step=step)
                visf.close()

            u = stepper(u, t, dt, rhs)

        if isinstance(case, ExactTestCase):
            assert discr.norm(u, 1) < 50

    finally:
        if write_output:
            vis.close()

        logmgr.save()
Beispiel #22
0
def main(write_output=True) :
    from math import sin, cos, pi, exp, sqrt
    from hedge.data import TimeConstantGivenFunction, \
            ConstantGivenFunction

    from hedge.backends import guess_run_context
    rcon = guess_run_context()

    dim = 2

    def boundary_tagger(fvi, el, fn, all_v):
        if el.face_normals[fn][0] > 0:
            return ["dirichlet"]
        else:
            return ["neumann"]

    if dim == 2:
        if rcon.is_head_rank:
            from hedge.mesh.generator import make_disk_mesh
            mesh = make_disk_mesh(r=0.5, boundary_tagger=boundary_tagger)
    elif dim == 3:
        if rcon.is_head_rank:
            from hedge.mesh.generator import make_ball_mesh
            mesh = make_ball_mesh(max_volume=0.001)
    else:
        raise RuntimeError, "bad number of dimensions"

    if rcon.is_head_rank:
        print "%d elements" % len(mesh.elements)
        mesh_data = rcon.distribute_mesh(mesh)
    else:
        mesh_data = rcon.receive_mesh()

    discr = rcon.make_discretization(mesh_data, order=3,
            debug=["cuda_no_plan"],
            default_scalar_type=numpy.float64)

    if write_output:
        from hedge.visualization import  VtkVisualizer
        vis = VtkVisualizer(discr, rcon, "fld")

    def u0(x, el):
        if la.norm(x) < 0.2:
            return 1
        else:
            return 0

    def coeff(x, el):
        if x[0] < 0:
            return 0.25
        else:
            return 1

    def dirichlet_bc(t, x):
        return 0

    def neumann_bc(t, x):
        return 2

    from hedge.models.diffusion import DiffusionOperator
    op = DiffusionOperator(discr.dimensions,
            #coeff=coeff,
            dirichlet_tag="dirichlet",
            dirichlet_bc=TimeConstantGivenFunction(ConstantGivenFunction(0)),
            neumann_tag="neumann",
            neumann_bc=TimeConstantGivenFunction(ConstantGivenFunction(1))
            )
    u = discr.interpolate_volume_function(u0)

    # diagnostics setup -------------------------------------------------------
    from pytools.log import LogManager, \
            add_general_quantities, \
            add_simulation_quantities, \
            add_run_info

    if write_output:
        log_file_name = "heat.dat"
    else:
        log_file_name = None

    logmgr = LogManager(log_file_name, "w", rcon.communicator)
    add_run_info(logmgr)
    add_general_quantities(logmgr)
    add_simulation_quantities(logmgr)
    discr.add_instrumentation(logmgr)

    from hedge.log import LpNorm
    u_getter = lambda: u
    logmgr.add_quantity(LpNorm(u_getter, discr, 1, name="l1_u"))
    logmgr.add_quantity(LpNorm(u_getter, discr, name="l2_u"))

    logmgr.add_watches(["step.max", "t_sim.max", "l2_u", "t_step.max"])

    # timestep loop -----------------------------------------------------------
    from hedge.timestep.runge_kutta import LSRK4TimeStepper, ODE45TimeStepper
    from hedge.timestep.dumka3 import Dumka3TimeStepper
    #stepper = LSRK4TimeStepper()
    stepper = Dumka3TimeStepper(3, rtol=1e-6, rcon=rcon,
            vector_primitive_factory=discr.get_vector_primitive_factory(),
            dtype=discr.default_scalar_type)
    #stepper = ODE45TimeStepper(rtol=1e-6, rcon=rcon,
            #vector_primitive_factory=discr.get_vector_primitive_factory(),
            #dtype=discr.default_scalar_type)
    stepper.add_instrumentation(logmgr)

    rhs = op.bind(discr)
    try:
        next_dt = op.estimate_timestep(discr,
                stepper=LSRK4TimeStepper(), t=0, fields=u)

        from hedge.timestep import times_and_steps
        step_it = times_and_steps(
                final_time=0.1, logmgr=logmgr,
                max_dt_getter=lambda t: next_dt,
                taken_dt_getter=lambda: taken_dt)

        for step, t, dt in step_it:
            if step % 10 == 0 and write_output:
                visf = vis.make_file("fld-%04d" % step)
                vis.add_data(visf, [
                    ("u", discr.convert_volume(u, kind="numpy")), 
                    ], time=t, step=step)
                visf.close()

            u, t, taken_dt, next_dt = stepper(u, t, next_dt, rhs)
            #u = stepper(u, t, dt, rhs)

        assert discr.norm(u) < 1
    finally:
        if write_output:
            vis.close()

        logmgr.close()
        discr.close()
Beispiel #23
0
def main(write_output=True):
    from hedge.data import GivenFunction, ConstantGivenFunction

    from hedge.backends import guess_run_context
    rcon = guess_run_context()

    dim = 2

    def boundary_tagger(fvi, el, fn, points):
        from math import atan2, pi
        normal = el.face_normals[fn]
        if -90 / 180 * pi < atan2(normal[1], normal[0]) < 90 / 180 * pi:
            return ["neumann"]
        else:
            return ["dirichlet"]

    if dim == 2:
        if rcon.is_head_rank:
            from hedge.mesh.generator import make_disk_mesh
            mesh = make_disk_mesh(r=0.5,
                                  boundary_tagger=boundary_tagger,
                                  max_area=1e-2)
    elif dim == 3:
        if rcon.is_head_rank:
            from hedge.mesh.generator import make_ball_mesh
            mesh = make_ball_mesh(
                max_volume=0.0001,
                boundary_tagger=lambda fvi, el, fn, points: ["dirichlet"])
    else:
        raise RuntimeError, "bad number of dimensions"

    if rcon.is_head_rank:
        print "%d elements" % len(mesh.elements)
        mesh_data = rcon.distribute_mesh(mesh)
    else:
        mesh_data = rcon.receive_mesh()

    discr = rcon.make_discretization(mesh_data, order=5, debug=[])

    def dirichlet_bc(x, el):
        from math import sin
        return sin(10 * x[0])

    def rhs_c(x, el):
        if la.norm(x) < 0.1:
            return 1000
        else:
            return 0

    def my_diff_tensor():
        result = numpy.eye(dim)
        result[0, 0] = 0.1
        return result

    try:
        from hedge.models.poisson import PoissonOperator
        from hedge.second_order import \
                IPDGSecondDerivative, LDGSecondDerivative, \
                StabilizedCentralSecondDerivative
        from hedge.mesh import TAG_NONE, TAG_ALL
        op = PoissonOperator(
            discr.dimensions,
            diffusion_tensor=my_diff_tensor(),

            #dirichlet_tag="dirichlet",
            #neumann_tag="neumann",
            dirichlet_tag=TAG_ALL,
            neumann_tag=TAG_NONE,

            #dirichlet_tag=TAG_ALL,
            #neumann_tag=TAG_NONE,
            dirichlet_bc=GivenFunction(dirichlet_bc),
            neumann_bc=ConstantGivenFunction(-10),
            scheme=StabilizedCentralSecondDerivative(),
            #scheme=LDGSecondDerivative(),
            #scheme=IPDGSecondDerivative(),
        )
        bound_op = op.bind(discr)

        from hedge.iterative import parallel_cg
        u = -parallel_cg(rcon,
                         -bound_op,
                         bound_op.prepare_rhs(
                             discr.interpolate_volume_function(rhs_c)),
                         debug=20,
                         tol=5e-4,
                         dot=discr.nodewise_dot_product,
                         x=discr.volume_zeros())

        if write_output:
            from hedge.visualization import SiloVisualizer, VtkVisualizer
            vis = VtkVisualizer(discr, rcon)
            visf = vis.make_file("fld")
            vis.add_data(visf, [
                ("sol", discr.convert_volume(u, kind="numpy")),
            ])
            visf.close()
    finally:
        discr.close()
Beispiel #24
0
def main(write_output=True):
    from pytools import add_python_path_relative_to_script
    add_python_path_relative_to_script("..")

    from hedge.backends import guess_run_context
    rcon = guess_run_context()

    from hedge.tools import EOCRecorder
    eoc_rec = EOCRecorder()


    if rcon.is_head_rank:
        from hedge.mesh.generator import \
                make_rect_mesh, \
                make_centered_regular_rect_mesh

        refine = 4
        mesh = make_centered_regular_rect_mesh((0,-5), (10,5), n=(9,9),
                post_refine_factor=refine)
        mesh_data = rcon.distribute_mesh(mesh)
    else:
        mesh_data = rcon.receive_mesh()

    # a second mesh to regrid to
    if rcon.is_head_rank:
        from hedge.mesh.generator import \
                make_rect_mesh, \
                make_centered_regular_rect_mesh

        refine = 4
        mesh2 = make_centered_regular_rect_mesh((0,-5), (10,5), n=(8,8),
                post_refine_factor=refine)
        mesh_data2 = rcon.distribute_mesh(mesh2)
    else:
        mesh_data2 = rcon.receive_mesh()



    for order in [3,4]:
        discr = rcon.make_discretization(mesh_data, order=order,
                        default_scalar_type=numpy.float64,
                        quad_min_degrees={
                            "gasdyn_vol": 3*order,
                            "gasdyn_face": 3*order,
                            })

        discr2 = rcon.make_discretization(mesh_data2, order=order,
                        default_scalar_type=numpy.float64,
                        quad_min_degrees={
                            "gasdyn_vol": 3*order,
                            "gasdyn_face": 3*order,
                            })


        from hedge.visualization import SiloVisualizer, VtkVisualizer
        vis = VtkVisualizer(discr, rcon, "vortex-%d" % order)
        #vis = SiloVisualizer(discr, rcon)

        from gas_dynamics_initials import Vortex
        vortex = Vortex()
        fields = vortex.volume_interpolant(0, discr)

        from hedge.models.gas_dynamics import GasDynamicsOperator
        from hedge.mesh import TAG_ALL

        op = GasDynamicsOperator(dimensions=2, gamma=vortex.gamma, mu=vortex.mu,
                prandtl=vortex.prandtl, spec_gas_const=vortex.spec_gas_const,
                bc_inflow=vortex, bc_outflow=vortex, bc_noslip=vortex,
                inflow_tag=TAG_ALL, source=None)

        euler_ex = op.bind(discr)

        max_eigval = [0]
        def rhs(t, q):
            ode_rhs, speed = euler_ex(t, q)
            max_eigval[0] = speed
            return ode_rhs
        rhs(0, fields)


        if rcon.is_head_rank:
            print "---------------------------------------------"
            print "order %d" % order
            print "---------------------------------------------"
            print "#elements for mesh 1 =", len(mesh.elements)
            print "#elements for mesh 2 =", len(mesh2.elements)


        # limiter ------------------------------------------------------------
        from hedge.models.gas_dynamics import SlopeLimiter1NEuler
        limiter = SlopeLimiter1NEuler(discr, vortex.gamma, 2, op)

        from hedge.timestep import SSPRK3TimeStepper
        #stepper = SSPRK3TimeStepper(limiter=limiter)
        stepper = SSPRK3TimeStepper()

        #from hedge.timestep import RK4TimeStepper
        #stepper = RK4TimeStepper()

        # diagnostics setup ---------------------------------------------------
        from pytools.log import LogManager, add_general_quantities, \
                add_simulation_quantities, add_run_info

        if write_output:
            log_file_name = "euler-%d.dat" % order
        else:
            log_file_name = None

        logmgr = LogManager(log_file_name, "w", rcon.communicator)
        add_run_info(logmgr)
        add_general_quantities(logmgr)
        add_simulation_quantities(logmgr)
        discr.add_instrumentation(logmgr)
        stepper.add_instrumentation(logmgr)

        logmgr.add_watches(["step.max", "t_sim.max", "t_step.max"])

        # timestep loop -------------------------------------------------------
        try:
            final_time = 0.2
            from hedge.timestep import times_and_steps
            step_it = times_and_steps(
                    final_time=final_time, logmgr=logmgr,
                    max_dt_getter=lambda t: op.estimate_timestep(discr,
                        stepper=stepper, t=t, max_eigenvalue=max_eigval[0]))

            for step, t, dt in step_it:
                if step % 10 == 0 and write_output:
                #if False:
                    visf = vis.make_file("vortex-%d-%04d" % (order, step))

                    #true_fields = vortex.volume_interpolant(t, discr)

                    from pyvisfile.silo import DB_VARTYPE_VECTOR
                    vis.add_data(visf,
                            [
                                ("rho", discr.convert_volume(op.rho(fields), kind="numpy")),
                                ("e", discr.convert_volume(op.e(fields), kind="numpy")),
                                ("rho_u", discr.convert_volume(op.rho_u(fields), kind="numpy")),
                                ("u", discr.convert_volume(op.u(fields), kind="numpy")),

                                #("true_rho", discr.convert_volume(op.rho(true_fields), kind="numpy")),
                                #("true_e", discr.convert_volume(op.e(true_fields), kind="numpy")),
                                #("true_rho_u", discr.convert_volume(op.rho_u(true_fields), kind="numpy")),
                                #("true_u", discr.convert_volume(op.u(true_fields), kind="numpy")),

                                #("rhs_rho", discr.convert_volume(op.rho(rhs_fields), kind="numpy")),
                                #("rhs_e", discr.convert_volume(op.e(rhs_fields), kind="numpy")),
                                #("rhs_rho_u", discr.convert_volume(op.rho_u(rhs_fields), kind="numpy")),
                                ],
                            #expressions=[
                                #("diff_rho", "rho-true_rho"),
                                #("diff_e", "e-true_e"),
                                #("diff_rho_u", "rho_u-true_rho_u", DB_VARTYPE_VECTOR),

                                #("p", "0.4*(e- 0.5*(rho_u*u))"),
                                #],
                            time=t, step=step
                            )
                    visf.close()

                fields = stepper(fields, t, dt, rhs)
                #fields = limiter(fields)

                #regrid to discr2 at some arbitrary time
                if step == 21:

                    #get interpolated fields
                    fields = discr.get_regrid_values(fields, discr2, dtype=None, use_btree=True, thresh=1e-8)
                    #get new stepper (old one has reference to discr
                    stepper = SSPRK3TimeStepper()
                    #new bind
                    euler_ex = op.bind(discr2)
                    #new rhs
                    max_eigval = [0]
                    def rhs(t, q):
                        ode_rhs, speed = euler_ex(t, q)
                        max_eigval[0] = speed
                        return ode_rhs
                    rhs(t+dt, fields)
                    #add logmanager
                    #discr2.add_instrumentation(logmgr)
                    #new step_it
                    step_it = times_and_steps(
                        final_time=final_time, logmgr=logmgr,
                        max_dt_getter=lambda t: op.estimate_timestep(discr2,
                            stepper=stepper, t=t, max_eigenvalue=max_eigval[0]))

                    #new visualization
                    vis.close()
                    vis = VtkVisualizer(discr2, rcon, "vortexNewGrid-%d" % order)
                    discr=discr2



                assert not numpy.isnan(numpy.sum(fields[0]))

            true_fields = vortex.volume_interpolant(final_time, discr)
            l2_error = discr.norm(fields-true_fields)
            l2_error_rho = discr.norm(op.rho(fields)-op.rho(true_fields))
            l2_error_e = discr.norm(op.e(fields)-op.e(true_fields))
            l2_error_rhou = discr.norm(op.rho_u(fields)-op.rho_u(true_fields))
            l2_error_u = discr.norm(op.u(fields)-op.u(true_fields))

            eoc_rec.add_data_point(order, l2_error)
            print
            print eoc_rec.pretty_print("P.Deg.", "L2 Error")

            logmgr.set_constant("l2_error", l2_error)
            logmgr.set_constant("l2_error_rho", l2_error_rho)
            logmgr.set_constant("l2_error_e", l2_error_e)
            logmgr.set_constant("l2_error_rhou", l2_error_rhou)
            logmgr.set_constant("l2_error_u", l2_error_u)
            logmgr.set_constant("refinement", refine)

        finally:
            if write_output:
                vis.close()

            logmgr.close()
            discr.close()
Beispiel #25
0
def main(write_output=True, 
        flux_type_arg="upwind", dtype=numpy.float64, debug=[]):
    from pytools.stopwatch import Job
    from math import sin, cos, pi, exp, sqrt

    from hedge.backends import guess_run_context
    rcon = guess_run_context()

    if rcon.is_head_rank:
        from hedge.mesh.reader.gmsh import generate_gmsh
        mesh = generate_gmsh(GEOMETRY, 2,
                allow_internal_boundaries=True)

        print "%d elements" % len(mesh.elements)
        mesh_data = rcon.distribute_mesh(mesh)
    else:
        mesh_data = rcon.receive_mesh()

    discr = rcon.make_discretization(mesh_data, order=4, debug=debug,
            default_scalar_type=dtype)
    from hedge.timestep import RK4TimeStepper
    stepper = RK4TimeStepper(dtype=dtype)

    from hedge.visualization import VtkVisualizer
    if write_output:
        vis = VtkVisualizer(discr, rcon, "fld")

    def source_u(x, el):
        return exp(-numpy.dot(x, x)*128)

    from hedge.models.wave import StrongWaveOperator
    from hedge.mesh import TAG_ALL, TAG_NONE
    from hedge.data import \
            make_tdep_given, \
            TimeHarmonicGivenFunction, \
            TimeIntervalGivenFunction

    op = StrongWaveOperator(-1, discr.dimensions, 
            source_f=TimeIntervalGivenFunction(
                TimeHarmonicGivenFunction(
                    make_tdep_given(source_u), omega=10),
                0, 1),
            dirichlet_tag="boundary",
            neumann_tag=TAG_NONE,
            radiation_tag=TAG_NONE,
            flux_type=flux_type_arg
            )

    from hedge.tools import join_fields
    fields = join_fields(discr.volume_zeros(dtype=dtype),
            [discr.volume_zeros(dtype=dtype) for i in range(discr.dimensions)])

    # diagnostics setup -------------------------------------------------------
    from pytools.log import LogManager, \
            add_general_quantities, \
            add_simulation_quantities, \
            add_run_info

    if write_output:
        log_file_name = "wiggly.dat"
    else:
        log_file_name = None

    logmgr = LogManager(log_file_name, "w", rcon.communicator)
    add_run_info(logmgr)
    add_general_quantities(logmgr)
    add_simulation_quantities(logmgr)
    discr.add_instrumentation(logmgr)

    stepper.add_instrumentation(logmgr)

    logmgr.add_watches(["step.max", "t_sim.max", "t_step.max"])

    # timestep loop -----------------------------------------------------------
    rhs = op.bind(discr)
    try:
        from hedge.timestep import times_and_steps
        step_it = times_and_steps(
                final_time=4, logmgr=logmgr,
                max_dt_getter=lambda t: op.estimate_timestep(discr,
                    stepper=stepper, t=t, fields=fields))

        for step, t, dt in step_it:
            if step % 10 == 0 and write_output:
                visf = vis.make_file("fld-%04d" % step)

                vis.add_data(visf,
                        [
                            ("u", fields[0]),
                            ("v", fields[1:]), 
                        ],
                        time=t,
                        step=step)
                visf.close()

            fields = stepper(fields, t, dt, rhs)

        assert discr.norm(fields) < 1
        assert fields[0].dtype == dtype

    finally:
        if write_output:
            vis.close()

        logmgr.close()
        discr.close()
Beispiel #26
0
def main(write_output=True):
    from pytools import add_python_path_relative_to_script
    add_python_path_relative_to_script("..")

    from hedge.backends import guess_run_context
    rcon = guess_run_context()

    from hedge.tools import EOCRecorder
    eoc_rec = EOCRecorder()

    if rcon.is_head_rank:
        from hedge.mesh.generator import \
                make_rect_mesh, \
                make_centered_regular_rect_mesh

        refine = 4
        mesh = make_centered_regular_rect_mesh((0, -5), (10, 5),
                                               n=(9, 9),
                                               post_refine_factor=refine)
        mesh_data = rcon.distribute_mesh(mesh)
    else:
        mesh_data = rcon.receive_mesh()

    for order in [3, 4, 5]:
        from gas_dynamics_initials import Vortex
        flow = Vortex()

        from hedge.models.gas_dynamics import (GasDynamicsOperator,
                                               PolytropeEOS, GammaLawEOS)

        from hedge.mesh import TAG_ALL
        # works equally well for GammaLawEOS
        op = GasDynamicsOperator(dimensions=2,
                                 mu=flow.mu,
                                 prandtl=flow.prandtl,
                                 spec_gas_const=flow.spec_gas_const,
                                 equation_of_state=PolytropeEOS(flow.gamma),
                                 bc_inflow=flow,
                                 bc_outflow=flow,
                                 bc_noslip=flow,
                                 inflow_tag=TAG_ALL,
                                 source=None)

        discr = rcon.make_discretization(mesh_data,
                                         order=order,
                                         default_scalar_type=numpy.float64,
                                         quad_min_degrees={
                                             "gasdyn_vol": 3 * order,
                                             "gasdyn_face": 3 * order,
                                         },
                                         tune_for=op.op_template(),
                                         debug=["cuda_no_plan"])

        from hedge.visualization import SiloVisualizer, VtkVisualizer
        vis = VtkVisualizer(discr, rcon, "vortex-%d" % order)
        #vis = SiloVisualizer(discr, rcon)

        fields = flow.volume_interpolant(0, discr)

        euler_ex = op.bind(discr)

        max_eigval = [0]

        def rhs(t, q):
            ode_rhs, speed = euler_ex(t, q)
            max_eigval[0] = speed
            return ode_rhs

        rhs(0, fields)

        if rcon.is_head_rank:
            print "---------------------------------------------"
            print "order %d" % order
            print "---------------------------------------------"
            print "#elements=", len(mesh.elements)

        # limiter ------------------------------------------------------------
        from hedge.models.gas_dynamics import SlopeLimiter1NEuler
        limiter = SlopeLimiter1NEuler(discr, flow.gamma, 2, op)

        from hedge.timestep.runge_kutta import SSP3TimeStepper
        #stepper = SSP3TimeStepper(limiter=limiter)
        stepper = SSP3TimeStepper(
            vector_primitive_factory=discr.get_vector_primitive_factory())

        #from hedge.timestep import RK4TimeStepper
        #stepper = RK4TimeStepper()

        # diagnostics setup ---------------------------------------------------
        from pytools.log import LogManager, add_general_quantities, \
                add_simulation_quantities, add_run_info

        if write_output:
            log_file_name = "euler-%d.dat" % order
        else:
            log_file_name = None

        logmgr = LogManager(log_file_name, "w", rcon.communicator)
        add_run_info(logmgr)
        add_general_quantities(logmgr)
        add_simulation_quantities(logmgr)
        discr.add_instrumentation(logmgr)
        stepper.add_instrumentation(logmgr)

        logmgr.add_watches(["step.max", "t_sim.max", "t_step.max"])

        # timestep loop -------------------------------------------------------
        try:
            final_time = flow.final_time
            from hedge.timestep import times_and_steps
            step_it = times_and_steps(
                final_time=final_time,
                logmgr=logmgr,
                max_dt_getter=lambda t: op.estimate_timestep(
                    discr, stepper=stepper, t=t, max_eigenvalue=max_eigval[0]))

            print "run until t=%g" % final_time
            for step, t, dt in step_it:
                if step % 10 == 0 and write_output:
                    #if False:
                    visf = vis.make_file("vortex-%d-%04d" % (order, step))

                    #true_fields = vortex.volume_interpolant(t, discr)

                    from pyvisfile.silo import DB_VARTYPE_VECTOR
                    vis.add_data(
                        visf,
                        [
                            ("rho",
                             discr.convert_volume(op.rho(fields),
                                                  kind="numpy")),
                            ("e",
                             discr.convert_volume(op.e(fields), kind="numpy")),
                            ("rho_u",
                             discr.convert_volume(op.rho_u(fields),
                                                  kind="numpy")),
                            ("u",
                             discr.convert_volume(op.u(fields), kind="numpy")),

                            #("true_rho", discr.convert_volume(op.rho(true_fields), kind="numpy")),
                            #("true_e", discr.convert_volume(op.e(true_fields), kind="numpy")),
                            #("true_rho_u", discr.convert_volume(op.rho_u(true_fields), kind="numpy")),
                            #("true_u", discr.convert_volume(op.u(true_fields), kind="numpy")),

                            #("rhs_rho", discr.convert_volume(op.rho(rhs_fields), kind="numpy")),
                            #("rhs_e", discr.convert_volume(op.e(rhs_fields), kind="numpy")),
                            #("rhs_rho_u", discr.convert_volume(op.rho_u(rhs_fields), kind="numpy")),
                        ],
                        #expressions=[
                        #("diff_rho", "rho-true_rho"),
                        #("diff_e", "e-true_e"),
                        #("diff_rho_u", "rho_u-true_rho_u", DB_VARTYPE_VECTOR),

                        #("p", "0.4*(e- 0.5*(rho_u*u))"),
                        #],
                        time=t,
                        step=step)
                    visf.close()

                fields = stepper(fields, t, dt, rhs)
                #fields = limiter(fields)

                assert not numpy.isnan(numpy.sum(fields[0]))

            true_fields = flow.volume_interpolant(final_time, discr)
            l2_error = discr.norm(fields - true_fields)
            l2_error_rho = discr.norm(op.rho(fields) - op.rho(true_fields))
            l2_error_e = discr.norm(op.e(fields) - op.e(true_fields))
            l2_error_rhou = discr.norm(
                op.rho_u(fields) - op.rho_u(true_fields))
            l2_error_u = discr.norm(op.u(fields) - op.u(true_fields))

            eoc_rec.add_data_point(order, l2_error)
            print
            print eoc_rec.pretty_print("P.Deg.", "L2 Error")

            logmgr.set_constant("l2_error", l2_error)
            logmgr.set_constant("l2_error_rho", l2_error_rho)
            logmgr.set_constant("l2_error_e", l2_error_e)
            logmgr.set_constant("l2_error_rhou", l2_error_rhou)
            logmgr.set_constant("l2_error_u", l2_error_u)
            logmgr.set_constant("refinement", refine)

        finally:
            if write_output:
                vis.close()

            logmgr.close()
            discr.close()

    # after order loop
    assert eoc_rec.estimate_order_of_convergence()[0, 1] > 6
Beispiel #27
0
def main(write_output=True,
         flux_type_arg="upwind",
         dtype=np.float64,
         debug=[]):
    from math import sin, cos, pi, exp, sqrt  # noqa

    from hedge.backends import guess_run_context
    rcon = guess_run_context()

    if rcon.is_head_rank:
        from hedge.mesh.reader.gmsh import generate_gmsh
        mesh = generate_gmsh(GEOMETRY,
                             2,
                             allow_internal_boundaries=True,
                             force_dimension=2)

        print "%d elements" % len(mesh.elements)
        mesh_data = rcon.distribute_mesh(mesh)
    else:
        mesh_data = rcon.receive_mesh()

    discr = rcon.make_discretization(mesh_data,
                                     order=4,
                                     debug=debug,
                                     default_scalar_type=dtype)
    from hedge.timestep.runge_kutta import LSRK4TimeStepper
    stepper = LSRK4TimeStepper(dtype=dtype)

    from hedge.visualization import VtkVisualizer
    if write_output:
        vis = VtkVisualizer(discr, rcon, "fld")

    source_center = 0
    source_width = 0.05
    source_omega = 3

    import hedge.optemplate as sym
    sym_x = sym.nodes(2)
    sym_source_center_dist = sym_x - source_center

    from hedge.models.wave import StrongWaveOperator
    op = StrongWaveOperator(
        -1,
        discr.dimensions,
        source_f=sym.CFunction("sin")(
            source_omega * sym.ScalarParameter("t")) * sym.CFunction("exp")(
                -np.dot(sym_source_center_dist, sym_source_center_dist) /
                source_width**2),
        dirichlet_tag="boundary",
        neumann_tag=TAG_NONE,
        radiation_tag=TAG_NONE,
        flux_type=flux_type_arg)

    from hedge.tools import join_fields
    fields = join_fields(
        discr.volume_zeros(dtype=dtype),
        [discr.volume_zeros(dtype=dtype) for i in range(discr.dimensions)])

    # diagnostics setup -------------------------------------------------------
    from pytools.log import LogManager, \
            add_general_quantities, \
            add_simulation_quantities, \
            add_run_info

    if write_output:
        log_file_name = "wiggly.dat"
    else:
        log_file_name = None

    logmgr = LogManager(log_file_name, "w", rcon.communicator)
    add_run_info(logmgr)
    add_general_quantities(logmgr)
    add_simulation_quantities(logmgr)
    discr.add_instrumentation(logmgr)

    stepper.add_instrumentation(logmgr)

    logmgr.add_watches(["step.max", "t_sim.max", "t_step.max"])

    # timestep loop -----------------------------------------------------------
    rhs = op.bind(discr)
    try:
        from hedge.timestep import times_and_steps
        step_it = times_and_steps(
            final_time=4,
            logmgr=logmgr,
            max_dt_getter=lambda t: op.estimate_timestep(
                discr, stepper=stepper, t=t, fields=fields))

        for step, t, dt in step_it:
            if step % 10 == 0 and write_output:
                visf = vis.make_file("fld-%04d" % step)

                vis.add_data(visf, [
                    ("u", fields[0]),
                    ("v", fields[1:]),
                ],
                             time=t,
                             step=step)
                visf.close()

            fields = stepper(fields, t, dt, rhs)

        assert discr.norm(fields) < 1
        assert fields[0].dtype == dtype

    finally:
        if write_output:
            vis.close()

        logmgr.close()
        discr.close()
Beispiel #28
0
def main(write_output=True):
    from math import sqrt, pi, exp
    from os.path import join

    from hedge.backends import guess_run_context
    rcon = guess_run_context()

    epsilon0 = 8.8541878176e-12  # C**2 / (N m**2)
    mu0 = 4 * pi * 1e-7  # N/A**2.
    epsilon = 1 * epsilon0
    mu = 1 * mu0

    output_dir = "maxwell-2d"
    import os
    if not os.access(output_dir, os.F_OK):
        os.makedirs(output_dir)

    from hedge.mesh.generator import make_disk_mesh
    mesh = make_disk_mesh(r=0.5, max_area=1e-3)

    if rcon.is_head_rank:
        mesh_data = rcon.distribute_mesh(mesh)
    else:
        mesh_data = rcon.receive_mesh()

    class CurrentSource:
        shape = (3, )

        def __call__(self, x, el):
            return [0, 0, exp(-80 * la.norm(x))]

    order = 3
    final_time = 1e-8
    discr = rcon.make_discretization(mesh_data,
                                     order=order,
                                     debug=["cuda_no_plan"])

    from hedge.visualization import VtkVisualizer
    if write_output:
        vis = VtkVisualizer(discr, rcon, join(output_dir, "em-%d" % order))

    if rcon.is_head_rank:
        print "order %d" % order
        print "#elements=", len(mesh.elements)

    from hedge.mesh import TAG_ALL, TAG_NONE
    from hedge.models.em import TMMaxwellOperator
    from hedge.data import make_tdep_given, TimeIntervalGivenFunction
    op = TMMaxwellOperator(epsilon,
                           mu,
                           flux_type=1,
                           current=TimeIntervalGivenFunction(
                               make_tdep_given(CurrentSource()),
                               off_time=final_time / 10),
                           absorb_tag=TAG_ALL,
                           pec_tag=TAG_NONE)
    fields = op.assemble_eh(discr=discr)

    from hedge.timestep import LSRK4TimeStepper
    stepper = LSRK4TimeStepper()
    from time import time
    last_tstep = time()
    t = 0

    # diagnostics setup ---------------------------------------------------
    from pytools.log import LogManager, add_general_quantities, \
            add_simulation_quantities, add_run_info

    if write_output:
        log_file_name = join(output_dir, "maxwell-%d.dat" % order)
    else:
        log_file_name = None

    logmgr = LogManager(log_file_name, "w", rcon.communicator)
    add_run_info(logmgr)
    add_general_quantities(logmgr)
    add_simulation_quantities(logmgr)
    discr.add_instrumentation(logmgr)
    stepper.add_instrumentation(logmgr)

    from pytools.log import IntervalTimer
    vis_timer = IntervalTimer("t_vis", "Time spent visualizing")
    logmgr.add_quantity(vis_timer)

    from hedge.log import EMFieldGetter, add_em_quantities
    field_getter = EMFieldGetter(discr, op, lambda: fields)
    add_em_quantities(logmgr, op, field_getter)

    logmgr.add_watches(
        ["step.max", "t_sim.max", ("W_field", "W_el+W_mag"), "t_step.max"])

    # timestep loop -------------------------------------------------------
    rhs = op.bind(discr)

    try:
        from hedge.timestep import times_and_steps
        step_it = times_and_steps(
            final_time=final_time,
            logmgr=logmgr,
            max_dt_getter=lambda t: op.estimate_timestep(
                discr, stepper=stepper, t=t, fields=fields))

        for step, t, dt in step_it:
            if step % 10 == 0 and write_output:
                e, h = op.split_eh(fields)
                visf = vis.make_file(
                    join(output_dir, "em-%d-%04d" % (order, step)))
                vis.add_data(visf, [
                    ("e", discr.convert_volume(e, "numpy")),
                    ("h", discr.convert_volume(h, "numpy")),
                ],
                             time=t,
                             step=step)
                visf.close()

            fields = stepper(fields, t, dt, rhs)

        assert discr.norm(fields) < 0.03
    finally:
        if write_output:
            vis.close()

        logmgr.close()
        discr.close()
Beispiel #29
0
def main(write_output=True):
    from math import sin, exp, sqrt

    from hedge.mesh.generator import make_rect_mesh
    mesh = make_rect_mesh(a=(-0.5,-0.5),b=(0.5,0.5),max_area=0.008)

    from hedge.backends.jit import Discretization

    discr = Discretization(mesh, order=4)

    from hedge.visualization import VtkVisualizer
    vis = VtkVisualizer(discr, None, "fld")

    def source_u(x, el):
        x = x - numpy.array([0.1,0.22])
        return exp(-numpy.dot(x, x)*128)

    from hedge.data import \
            make_tdep_given, \
            TimeHarmonicGivenFunction, \
            TimeIntervalGivenFunction

    from hedge.models.wave import StrongWaveOperator
    from hedge.mesh import TAG_ALL, TAG_NONE
    op = StrongWaveOperator(-1, discr.dimensions, 
            source_f=TimeIntervalGivenFunction(
                TimeHarmonicGivenFunction(
                    make_tdep_given(source_u), omega=10),
                0, 1),
            dirichlet_tag=TAG_NONE,
            neumann_tag=TAG_NONE,
            radiation_tag=TAG_ALL,
            flux_type="upwind")

    from hedge.tools import join_fields
    fields = join_fields(discr.volume_zeros(),
            [discr.volume_zeros() for i in range(discr.dimensions)])

    from hedge.timestep import RK4TimeStepper
    stepper = RK4TimeStepper()
    dt = op.estimate_timestep(discr, stepper=stepper, fields=fields)

    nsteps = int(1/dt)
    print "dt=%g nsteps=%d" % (dt, nsteps)

    rhs = op.bind(discr)
    for step in range(nsteps):
        t = step*dt

        if step % 50 == 0 and write_output:
            print step, t, discr.norm(fields[0])
            visf = vis.make_file("fld-%04d" % step)

            vis.add_data(visf,
                    [ ("u", fields[0]), ("v", fields[1:]), ],
                    time=t, step=step)
            visf.close()

        fields = stepper(fields, t, dt, rhs)

    vis.close()
Beispiel #30
0
def main(write_output=True, allow_features=None, flux_type_arg=1, bdry_flux_type_arg=None, extra_discr_args={}):
    from hedge.mesh.generator import make_cylinder_mesh, make_box_mesh
    from hedge.tools import EOCRecorder, to_obj_array
    from math import sqrt, pi
    from analytic_solutions import (
        check_time_harmonic_solution,
        RealPartAdapter,
        SplitComplexAdapter,
        CylindricalFieldAdapter,
        CylindricalCavityMode,
        RectangularWaveguideMode,
        RectangularCavityMode,
    )
    from hedge.models.em import MaxwellOperator

    from hedge.backends import guess_run_context

    rcon = guess_run_context(allow_features)

    epsilon0 = 8.8541878176e-12  # C**2 / (N m**2)
    mu0 = 4 * pi * 1e-7  # N/A**2.
    epsilon = 1 * epsilon0
    mu = 1 * mu0

    eoc_rec = EOCRecorder()

    cylindrical = False
    periodic = False

    if cylindrical:
        R = 1
        d = 2
        mode = CylindricalCavityMode(m=1, n=1, p=1, radius=R, height=d, epsilon=epsilon, mu=mu)
        r_sol = CylindricalFieldAdapter(RealPartAdapter(mode))
        c_sol = SplitComplexAdapter(CylindricalFieldAdapter(mode))

        if rcon.is_head_rank:
            mesh = make_cylinder_mesh(radius=R, height=d, max_volume=0.01)
    else:
        if periodic:
            mode = RectangularWaveguideMode(epsilon, mu, (3, 2, 1))
            periodicity = (False, False, True)
        else:
            periodicity = None
        mode = RectangularCavityMode(epsilon, mu, (1, 2, 2))

        if rcon.is_head_rank:
            mesh = make_box_mesh(max_volume=0.001, periodicity=periodicity)

    if rcon.is_head_rank:
        mesh_data = rcon.distribute_mesh(mesh)
    else:
        mesh_data = rcon.receive_mesh()

    for order in [4, 5, 6]:
        # for order in [1,2,3,4,5,6]:
        extra_discr_args.setdefault("debug", []).extend(["cuda_no_plan", "cuda_dump_kernels"])

        op = MaxwellOperator(epsilon, mu, flux_type=flux_type_arg, bdry_flux_type=bdry_flux_type_arg)

        discr = rcon.make_discretization(mesh_data, order=order, tune_for=op.op_template(), **extra_discr_args)

        from hedge.visualization import VtkVisualizer

        if write_output:
            vis = VtkVisualizer(discr, rcon, "em-%d" % order)

        mode.set_time(0)

        def get_true_field():
            return discr.convert_volume(
                to_obj_array(mode(discr).real.astype(discr.default_scalar_type).copy()), kind=discr.compute_kind
            )

        fields = get_true_field()

        if rcon.is_head_rank:
            print "---------------------------------------------"
            print "order %d" % order
            print "---------------------------------------------"
            print "#elements=", len(mesh.elements)

        from hedge.timestep.runge_kutta import LSRK4TimeStepper

        stepper = LSRK4TimeStepper(dtype=discr.default_scalar_type, rcon=rcon)
        # from hedge.timestep.dumka3 import Dumka3TimeStepper
        # stepper = Dumka3TimeStepper(3, dtype=discr.default_scalar_type, rcon=rcon)

        # diagnostics setup ---------------------------------------------------
        from pytools.log import LogManager, add_general_quantities, add_simulation_quantities, add_run_info

        if write_output:
            log_file_name = "maxwell-%d.dat" % order
        else:
            log_file_name = None

        logmgr = LogManager(log_file_name, "w", rcon.communicator)

        add_run_info(logmgr)
        add_general_quantities(logmgr)
        add_simulation_quantities(logmgr)
        discr.add_instrumentation(logmgr)
        stepper.add_instrumentation(logmgr)

        from pytools.log import IntervalTimer

        vis_timer = IntervalTimer("t_vis", "Time spent visualizing")
        logmgr.add_quantity(vis_timer)

        from hedge.log import EMFieldGetter, add_em_quantities

        field_getter = EMFieldGetter(discr, op, lambda: fields)
        add_em_quantities(logmgr, op, field_getter)

        logmgr.add_watches(["step.max", "t_sim.max", ("W_field", "W_el+W_mag"), "t_step.max"])

        # timestep loop -------------------------------------------------------
        rhs = op.bind(discr)
        final_time = 0.5e-9

        try:
            from hedge.timestep import times_and_steps

            step_it = times_and_steps(
                final_time=final_time,
                logmgr=logmgr,
                max_dt_getter=lambda t: op.estimate_timestep(discr, stepper=stepper, t=t, fields=fields),
            )

            for step, t, dt in step_it:
                if step % 50 == 0 and write_output:
                    sub_timer = vis_timer.start_sub_timer()
                    e, h = op.split_eh(fields)
                    visf = vis.make_file("em-%d-%04d" % (order, step))
                    vis.add_data(
                        visf,
                        [("e", discr.convert_volume(e, kind="numpy")), ("h", discr.convert_volume(h, kind="numpy"))],
                        time=t,
                        step=step,
                    )
                    visf.close()
                    sub_timer.stop().submit()

                fields = stepper(fields, t, dt, rhs)

            mode.set_time(final_time)

            eoc_rec.add_data_point(order, discr.norm(fields - get_true_field()))

        finally:
            if write_output:
                vis.close()

            logmgr.close()
            discr.close()

        if rcon.is_head_rank:
            print
            print eoc_rec.pretty_print("P.Deg.", "L2 Error")

    assert eoc_rec.estimate_order_of_convergence()[0, 1] > 6
Beispiel #31
0
def main(write_output=True, allow_features=None):
    from hedge.timestep import RK4TimeStepper
    from hedge.mesh import make_ball_mesh, make_cylinder_mesh, make_box_mesh
    from hedge.visualization import \
            VtkVisualizer, \
            SiloVisualizer, \
            get_rank_partition
    from math import sqrt, pi

    from hedge.backends import guess_run_context
    rcon = guess_run_context(allow_features)

    epsilon0 = 8.8541878176e-12  # C**2 / (N m**2)
    mu0 = 4 * pi * 1e-7  # N/A**2.
    epsilon = 1 * epsilon0
    mu = 1 * mu0

    dims = 3

    if rcon.is_head_rank:
        if dims == 2:
            from hedge.mesh import make_rect_mesh
            mesh = make_rect_mesh(a=(-10.5, -1.5), b=(10.5, 1.5), max_area=0.1)
        elif dims == 3:
            from hedge.mesh import make_box_mesh
            mesh = make_box_mesh(a=(-10.5, -1.5, -1.5),
                                 b=(10.5, 1.5, 1.5),
                                 max_volume=0.1)

    if rcon.is_head_rank:
        mesh_data = rcon.distribute_mesh(mesh)
    else:
        mesh_data = rcon.receive_mesh()

    #for order in [1,2,3,4,5,6]:
    discr = rcon.make_discretization(mesh_data, order=3)

    if write_output:
        vis = VtkVisualizer(discr, rcon, "dipole")

    from analytic_solutions import DipoleFarField, SphericalFieldAdapter
    from hedge.data import ITimeDependentGivenFunction

    sph_dipole = DipoleFarField(
        q=1,  #C
        d=1 / 39,
        omega=2 * pi * 1e8,
        epsilon=epsilon0,
        mu=mu0,
    )
    cart_dipole = SphericalFieldAdapter(sph_dipole)

    class PointDipoleSource(ITimeDependentGivenFunction):
        def __init__(self):
            from pyrticle.tools import CInfinityShapeFunction
            sf = CInfinityShapeFunction(0.1 * sph_dipole.wavelength,
                                        discr.dimensions)
            self.num_sf = discr.interpolate_volume_function(
                lambda x, el: sf(x))
            self.vol_0 = discr.volume_zeros()

        def volume_interpolant(self, t, discr):
            from hedge.tools import make_obj_array
            return make_obj_array([
                self.vol_0, self.vol_0,
                sph_dipole.source_modulation(t) * self.num_sf
            ])

    from hedge.mesh import TAG_ALL, TAG_NONE
    if dims == 2:
        from hedge.models.em import TMMaxwellOperator as MaxwellOperator
    else:
        from hedge.models.em import MaxwellOperator

    op = MaxwellOperator(
        epsilon,
        mu,
        flux_type=1,
        pec_tag=TAG_NONE,
        absorb_tag=TAG_ALL,
        current=PointDipoleSource(),
    )

    fields = op.assemble_eh(discr=discr)

    if rcon.is_head_rank:
        print "#elements=", len(mesh.elements)

    stepper = RK4TimeStepper()

    # diagnostics setup ---------------------------------------------------
    from pytools.log import LogManager, add_general_quantities, \
            add_simulation_quantities, add_run_info

    if write_output:
        log_file_name = "dipole.dat"
    else:
        log_file_name = None

    logmgr = LogManager(log_file_name, "w", rcon.communicator)
    add_run_info(logmgr)
    add_general_quantities(logmgr)
    add_simulation_quantities(logmgr)
    discr.add_instrumentation(logmgr)
    stepper.add_instrumentation(logmgr)

    from pytools.log import IntervalTimer
    vis_timer = IntervalTimer("t_vis", "Time spent visualizing")
    logmgr.add_quantity(vis_timer)

    from hedge.log import EMFieldGetter, add_em_quantities
    field_getter = EMFieldGetter(discr, op, lambda: fields)
    add_em_quantities(logmgr, op, field_getter)

    from pytools.log import PushLogQuantity
    relerr_e_q = PushLogQuantity("relerr_e", "1",
                                 "Relative error in masked E-field")
    relerr_h_q = PushLogQuantity("relerr_h", "1",
                                 "Relative error in masked H-field")
    logmgr.add_quantity(relerr_e_q)
    logmgr.add_quantity(relerr_h_q)

    logmgr.add_watches([
        "step.max", "t_sim.max", ("W_field", "W_el+W_mag"), "t_step.max",
        "relerr_e", "relerr_h"
    ])

    if write_output:
        point_timeseries = [(open("b-x%d-vs-time.dat" % i,
                                  "w"), open("b-x%d-vs-time-true.dat" % i,
                                             "w"),
                             discr.get_point_evaluator(
                                 numpy.array([i, 0, 0][:dims],
                                             dtype=discr.default_scalar_type)))
                            for i in range(1, 5)]

    # timestep loop -------------------------------------------------------
    mask = discr.interpolate_volume_function(sph_dipole.far_field_mask)

    def apply_mask(field):
        from hedge.tools import log_shape
        ls = log_shape(field)
        result = discr.volume_empty(ls)
        from pytools import indices_in_shape
        for i in indices_in_shape(ls):
            result[i] = mask * field[i]

        return result

    rhs = op.bind(discr)

    t = 0
    try:
        from hedge.timestep import times_and_steps
        step_it = times_and_steps(
            final_time=1e-8,
            logmgr=logmgr,
            max_dt_getter=lambda t: op.estimate_timestep(
                discr, stepper=stepper, t=t, fields=fields))

        for step, t, dt in step_it:
            if write_output and step % 10 == 0:
                sub_timer = vis_timer.start_sub_timer()
                e, h = op.split_eh(fields)
                sph_dipole.set_time(t)
                true_e, true_h = op.split_eh(
                    discr.interpolate_volume_function(cart_dipole))
                visf = vis.make_file("dipole-%04d" % step)

                mask_e = apply_mask(e)
                mask_h = apply_mask(h)
                mask_true_e = apply_mask(true_e)
                mask_true_h = apply_mask(true_h)

                from pyvisfile.silo import DB_VARTYPE_VECTOR
                vis.add_data(visf, [("e", e), ("h", h), ("true_e", true_e),
                                    ("true_h", true_h), ("mask_e", mask_e),
                                    ("mask_h", mask_h),
                                    ("mask_true_e", mask_true_e),
                                    ("mask_true_h", mask_true_h)],
                             time=t,
                             step=step)
                visf.close()
                sub_timer.stop().submit()

                from hedge.tools import relative_error
                relerr_e_q.push_value(
                    relative_error(discr.norm(mask_e - mask_true_e),
                                   discr.norm(mask_true_e)))
                relerr_h_q.push_value(
                    relative_error(discr.norm(mask_h - mask_true_h),
                                   discr.norm(mask_true_h)))

                if write_output:
                    for outf_num, outf_true, evaluator in point_timeseries:
                        for outf, ev_h in zip([outf_num, outf_true],
                                              [h, true_h]):
                            outf.write("%g\t%g\n" %
                                       (t, op.mu * evaluator(ev_h[1])))
                            outf.flush()

            fields = stepper(fields, t, dt, rhs)

    finally:
        if write_output:
            vis.close()

        logmgr.save()
        discr.close()
Beispiel #32
0
def main(write_output=True):
    from hedge.data import GivenFunction, ConstantGivenFunction

    from hedge.backends import guess_run_context
    rcon = guess_run_context()

    dim = 2

    def boundary_tagger(fvi, el, fn, points):
        from math import atan2, pi
        normal = el.face_normals[fn]
        if -90/180*pi < atan2(normal[1], normal[0]) < 90/180*pi:
            return ["neumann"]
        else:
            return ["dirichlet"]

    if dim == 2:
        if rcon.is_head_rank:
            from hedge.mesh.generator import make_disk_mesh
            mesh = make_disk_mesh(r=0.5, boundary_tagger=boundary_tagger,
                    max_area=1e-2)
    elif dim == 3:
        if rcon.is_head_rank:
            from hedge.mesh.generator import make_ball_mesh
            mesh = make_ball_mesh(max_volume=0.0001,
                    boundary_tagger=lambda fvi, el, fn, points:
                    ["dirichlet"])
    else:
        raise RuntimeError, "bad number of dimensions"

    if rcon.is_head_rank:
        print "%d elements" % len(mesh.elements)
        mesh_data = rcon.distribute_mesh(mesh)
    else:
        mesh_data = rcon.receive_mesh()

    discr = rcon.make_discretization(mesh_data, order=5, 
            debug=[])

    def dirichlet_bc(x, el):
        from math import sin
        return sin(10*x[0])

    def rhs_c(x, el):
        if la.norm(x) < 0.1:
            return 1000
        else:
            return 0

    def my_diff_tensor():
        result = numpy.eye(dim)
        result[0,0] = 0.1
        return result

    try:
        from hedge.models.poisson import PoissonOperator
        from hedge.second_order import \
                IPDGSecondDerivative, LDGSecondDerivative, \
                StabilizedCentralSecondDerivative
        from hedge.mesh import TAG_NONE, TAG_ALL
        op = PoissonOperator(discr.dimensions, 
                diffusion_tensor=my_diff_tensor(),

                #dirichlet_tag="dirichlet",
                #neumann_tag="neumann", 

                dirichlet_tag=TAG_ALL,
                neumann_tag=TAG_NONE, 

                #dirichlet_tag=TAG_ALL,
                #neumann_tag=TAG_NONE, 

                dirichlet_bc=GivenFunction(dirichlet_bc),
                neumann_bc=ConstantGivenFunction(-10),

                scheme=StabilizedCentralSecondDerivative(),
                #scheme=LDGSecondDerivative(),
                #scheme=IPDGSecondDerivative(),
                )
        bound_op = op.bind(discr)

        from hedge.iterative import parallel_cg
        u = -parallel_cg(rcon, -bound_op, 
                bound_op.prepare_rhs(discr.interpolate_volume_function(rhs_c)), 
                debug=20, tol=5e-4,
                dot=discr.nodewise_dot_product,
                x=discr.volume_zeros())

        if write_output:
            from hedge.visualization import SiloVisualizer, VtkVisualizer
            vis = VtkVisualizer(discr, rcon)
            visf = vis.make_file("fld")
            vis.add_data(visf, [ ("sol", discr.convert_volume(u, kind="numpy")), ])
            visf.close()
    finally:
        discr.close()
Beispiel #33
0
def main(write_output=True, allow_features=None, flux_type_arg=1,
        bdry_flux_type_arg=None, extra_discr_args={}):
    from math import sqrt, pi
    from hedge.models.em import TEMaxwellOperator

    from hedge.backends import guess_run_context
    rcon = guess_run_context(allow_features)

    epsilon0 = 8.8541878176e-12 # C**2 / (N m**2)
    mu0 = 4*pi*1e-7 # N/A**2.
    c = 1/sqrt(mu0*epsilon0)

    materials = {"vacuum" : (epsilon0, mu0),
                 "dielectric" : (2*epsilon0, mu0)}

    output_dir = "2d_cavity"

    import os
    if not os.access(output_dir, os.F_OK):
        os.makedirs(output_dir)

    # should no tag raise an error or default to free space?
    def eps_val(x, el):
        for key in materials.keys():
            if el in material_elements[key]:
                return materials[key][0]
        raise ValueError, "Element does not belong to any material"

    def mu_val(x, el):
        for key in materials.keys():
            if el in material_elements[key]:
                return materials[key][1]
        raise ValueError, "Element does not belong to any material"

    # geometry of cavity
    d = 100e-3
    a = 150e-3

    # analytical frequency and transverse wavenumbers of resonance
    f0 = 9.0335649907522321e8
    h = 2*pi*f0/c
    l = -h*sqrt(2)

    # substitute the following and change materials for a homogeneous cavity
    #h = pi/a
    #l =-h

    def initial_val(discr):
        # the initial solution for the TE_10-like mode
        def initial_Hz(x, el):
            from math import cos, sin
            if el in material_elements["vacuum"]:
                return h*cos(h*x[0])
            else:
                return -l*sin(h*d)/sin(l*(a-d))*cos(l*(a-x[0]))

        from hedge.tools import make_obj_array
        result_zero = discr.volume_zeros(kind="numpy", dtype=numpy.float64)
        H_z = make_tdep_given(initial_Hz).volume_interpolant(0, discr)
        return make_obj_array([result_zero, result_zero, H_z])

    if rcon.is_head_rank:
        from hedge.mesh.reader.gmsh import generate_gmsh
        mesh = generate_gmsh(CAVITY_GEOMETRY, 2, force_dimension=2)
        mesh_data = rcon.distribute_mesh(mesh)
    else:
        mesh_data = rcon.receive_mesh()

    # Work out which elements belong to each material
    material_elements = {}
    for key in materials.keys():
        material_elements[key] = set(mesh_data.tag_to_elements[key])

    order = 3
    #extra_discr_args.setdefault("debug", []).append("cuda_no_plan")
    #extra_discr_args.setdefault("debug", []).append("dump_optemplate_stages")

    from hedge.data import make_tdep_given
    from hedge.mesh import TAG_ALL

    op = TEMaxwellOperator(epsilon=make_tdep_given(eps_val), mu=make_tdep_given(mu_val), \
            flux_type=flux_type_arg, \
            bdry_flux_type=bdry_flux_type_arg, dimensions=2, pec_tag=TAG_ALL)
    # op = TEMaxwellOperator(epsilon=epsilon0, mu=mu0,
            # flux_type=flux_type_arg, \
            # bdry_flux_type=bdry_flux_type_arg, dimensions=2, pec_tag=TAG_ALL)

    discr = rcon.make_discretization(mesh_data, order=order,
            tune_for=op.op_template(),
            **extra_discr_args)

    # create the initial solution
    fields = initial_val(discr)

    from hedge.visualization import VtkVisualizer
    if write_output:
        from os.path import join
        vis = VtkVisualizer(discr, rcon, join(output_dir, "cav-%d" % order))

    # monitor the solution at a point to find the resonant frequency
    try:
        point_getter = discr.get_point_evaluator(numpy.array([75e-3, 25e-3, 0])) #[0.25, 0.25, 0.25]))
    except RuntimeError:
        point_getter = None

    if rcon.is_head_rank:
        print "---------------------------------------------"
        print "order %d" % order
        print "---------------------------------------------"
        print "#elements=", len(mesh.elements)

    from hedge.timestep.runge_kutta import LSRK4TimeStepper
    stepper = LSRK4TimeStepper(dtype=discr.default_scalar_type, rcon=rcon)
    #from hedge.timestep.dumka3 import Dumka3TimeStepper
    #stepper = Dumka3TimeStepper(3, dtype=discr.default_scalar_type, rcon=rcon)

    # diagnostics setup ---------------------------------------------------
    from pytools.log import LogManager, add_general_quantities, \
            add_simulation_quantities, add_run_info

    if write_output:
        from os.path import join
        log_file_name = join(output_dir, "cavity-%d.dat" % order)
    else:
        log_file_name = None

    logmgr = LogManager(log_file_name, "w", rcon.communicator)

    add_run_info(logmgr)
    add_general_quantities(logmgr)
    add_simulation_quantities(logmgr)
    discr.add_instrumentation(logmgr)
    stepper.add_instrumentation(logmgr)

    from pytools.log import IntervalTimer
    vis_timer = IntervalTimer("t_vis", "Time spent visualizing")
    logmgr.add_quantity(vis_timer)

    #from hedge.log import EMFieldGetter, add_em_quantities
    #field_getter = EMFieldGetter(discr, op, lambda: fields)
    #add_em_quantities(logmgr, op, field_getter)

    logmgr.add_watches(
            ["step.max", "t_sim.max",
                #("W_field", "W_el+W_mag"),
                "t_step.max"]
            )

    # timestep loop -------------------------------------------------------
    rhs = op.bind(discr)
    final_time = 10e-9

    if point_getter is not None:
        from os.path import join
        pointfile = open(join(output_dir, "point.txt"), "wt")
        done_dt = False
    try:
        from hedge.timestep import times_and_steps
        from os.path import join
        step_it = times_and_steps(
                final_time=final_time, logmgr=logmgr,
                max_dt_getter=lambda t: op.estimate_timestep(discr,
                    stepper=stepper, t=t, fields=fields))

        for step, t, dt in step_it:
            if step % 10 == 0 and write_output:
                sub_timer = vis_timer.start_sub_timer()
                e, h = op.split_eh(fields)
                visf = vis.make_file(join(output_dir, "cav-%d-%04d") % (order, step))
                vis.add_data(visf,
                        [
                            ("e",
                                discr.convert_volume(e, kind="numpy")),
                            ("h",
                                discr.convert_volume(h, kind="numpy")),],
                        time=t, step=step
                        )
                visf.close()
                sub_timer.stop().submit()

            fields = stepper(fields, t, dt, rhs)
            if point_getter is not None:
                val = point_getter(fields)
                #print val
                if not done_dt:
                    pointfile.write("#%g\n" % dt)
                    done_dt = True
                pointfile.write("%g\n" %val[0])

    finally:
        if write_output:
            vis.close()

        logmgr.close()
        discr.close()

        if point_getter is not None:
            pointfile.close()
Beispiel #34
0
def main(write_output=True):
    from hedge.timestep import RK4TimeStepper
    from hedge.mesh import make_disk_mesh
    from math import sqrt, pi, exp

    from hedge.backends import guess_run_context, FEAT_CUDA
    rcon = guess_run_context()

    epsilon0 = 8.8541878176e-12 # C**2 / (N m**2)
    mu0 = 4*pi*1e-7 # N/A**2.
    epsilon = 1*epsilon0
    mu = 1*mu0

    c = 1/sqrt(mu*epsilon)

    cylindrical = False
    periodic = False

    pml_width = 0.5
    #mesh = make_mesh(a=numpy.array((-1,-1,-1)), b=numpy.array((1,1,1)), 
    #mesh = make_mesh(a=numpy.array((-3,-3)), b=numpy.array((3,3)), 
    mesh = make_mesh(a=numpy.array((-1,-1)), b=numpy.array((1,1)), 
    #mesh = make_mesh(a=numpy.array((-2,-2)), b=numpy.array((2,2)), 
            pml_width=pml_width, max_volume=0.01)

    if rcon.is_head_rank:
        mesh_data = rcon.distribute_mesh(mesh)
    else:
        mesh_data = rcon.receive_mesh()

    class Current:
        def volume_interpolant(self, t, discr):
            from hedge.tools import make_obj_array

            result = discr.volume_zeros(kind="numpy", dtype=numpy.float64)

            omega = 6*c
            if omega*t > 2*pi:
                return make_obj_array([result, result, result])

            x = make_obj_array(discr.nodes.T)
            r = numpy.sqrt(numpy.dot(x, x))

            idx = r<0.3
            result[idx] = (1+numpy.cos(pi*r/0.3))[idx] \
                    *numpy.sin(omega*t)**3

            result = discr.convert_volume(result, kind=discr.compute_kind,
                    dtype=discr.default_scalar_type)
            return make_obj_array([-result, result, result])

    order = 3
    discr = rcon.make_discretization(mesh_data, order=order,
            debug=["cuda_no_plan"])

    from hedge.visualization import VtkVisualizer
    if write_output:
        vis = VtkVisualizer(discr, rcon, "em-%d" % order)

    from hedge.mesh import TAG_ALL, TAG_NONE
    from hedge.data import GivenFunction, TimeHarmonicGivenFunction, TimeIntervalGivenFunction
    from hedge.models.em import MaxwellOperator
    from hedge.models.pml import \
            AbarbanelGottliebPMLMaxwellOperator, \
            AbarbanelGottliebPMLTMMaxwellOperator, \
            AbarbanelGottliebPMLTEMaxwellOperator

    op = AbarbanelGottliebPMLTEMaxwellOperator(epsilon, mu, flux_type=1,
            current=Current(),
            pec_tag=TAG_ALL,
            absorb_tag=TAG_NONE,
            add_decay=True
            )

    fields = op.assemble_ehpq(discr=discr)

    stepper = RK4TimeStepper()

    if rcon.is_head_rank:
        print "order %d" % order
        print "#elements=", len(mesh.elements)

    # diagnostics setup ---------------------------------------------------
    from pytools.log import LogManager, add_general_quantities, \
            add_simulation_quantities, add_run_info

    if write_output:
        log_file_name = "maxwell-%d.dat" % order
    else:
        log_file_name = None

    logmgr = LogManager(log_file_name, "w", rcon.communicator)
    add_run_info(logmgr)
    add_general_quantities(logmgr)
    add_simulation_quantities(logmgr)
    discr.add_instrumentation(logmgr)
    stepper.add_instrumentation(logmgr)

    from pytools.log import IntervalTimer
    vis_timer = IntervalTimer("t_vis", "Time spent visualizing")
    logmgr.add_quantity(vis_timer)

    from hedge.log import EMFieldGetter, add_em_quantities
    field_getter = EMFieldGetter(discr, op, lambda: fields)
    add_em_quantities(logmgr, op, field_getter)

    logmgr.add_watches(["step.max", "t_sim.max", ("W_field", "W_el+W_mag"), "t_step.max"])

    from hedge.log import LpNorm
    class FieldIdxGetter:
        def __init__(self, whole_getter, idx):
            self.whole_getter = whole_getter
            self.idx = idx

        def __call__(self):
            return self.whole_getter()[self.idx]

    # timestep loop -------------------------------------------------------

    t = 0
    pml_coeff = op.coefficients_from_width(discr, width=pml_width)
    rhs = op.bind(discr, pml_coeff)

    try:
        from hedge.timestep import times_and_steps
        step_it = times_and_steps(
                final_time=4/c, logmgr=logmgr,
                max_dt_getter=lambda t: op.estimate_timestep(discr,
                    stepper=stepper, t=t, fields=fields))

        for step, t, dt in step_it:
            if step % 10 == 0 and write_output:
                e, h, p, q = op.split_ehpq(fields)
                visf = vis.make_file("em-%d-%04d" % (order, step))
                #pml_rhs_e, pml_rhs_h, pml_rhs_p, pml_rhs_q = \
                        #op.split_ehpq(rhs(t, fields))
                j = Current().volume_interpolant(t, discr)
                vis.add_data(visf, [ 
                    ("e", discr.convert_volume(e, "numpy")), 
                    ("h", discr.convert_volume(h, "numpy")), 
                    ("p", discr.convert_volume(p, "numpy")), 
                    ("q", discr.convert_volume(q, "numpy")), 
                    ("j", discr.convert_volume(j, "numpy")), 
                    #("pml_rhs_e", pml_rhs_e),
                    #("pml_rhs_h", pml_rhs_h),
                    #("pml_rhs_p", pml_rhs_p),
                    #("pml_rhs_q", pml_rhs_q),
                    #("max_rhs_e", max_rhs_e),
                    #("max_rhs_h", max_rhs_h),
                    #("max_rhs_p", max_rhs_p),
                    #("max_rhs_q", max_rhs_q),
                    ], 
                    time=t, step=step)
                visf.close()

            fields = stepper(fields, t, dt, rhs)

        _, _, energies_data = logmgr.get_expr_dataset("W_el+W_mag")
        energies = [value for tick_nbr, value in energies_data]

        assert energies[-1] < max(energies) * 1e-2

    finally:
        logmgr.close()

        if write_output:
            vis.close()
def main(write_output=True,
        dir_tag=TAG_NONE,
        neu_tag=TAG_NONE,
        rad_tag=TAG_ALL,
        flux_type_arg="upwind"):
    from math import sin, cos, pi, exp, sqrt  # noqa

    from hedge.backends import guess_run_context
    rcon = guess_run_context()

    dim = 2

    if dim == 1:
        if rcon.is_head_rank:
            from hedge.mesh.generator import make_uniform_1d_mesh
            mesh = make_uniform_1d_mesh(-10, 10, 500)
    elif dim == 2:
        from hedge.mesh.generator import make_rect_mesh
        if rcon.is_head_rank:
            mesh = make_rect_mesh(a=(-1, -1), b=(1, 1), max_area=0.003)
    elif dim == 3:
        if rcon.is_head_rank:
            from hedge.mesh.generator import make_ball_mesh
            mesh = make_ball_mesh(max_volume=0.0005)
    else:
        raise RuntimeError("bad number of dimensions")

    if rcon.is_head_rank:
        print "%d elements" % len(mesh.elements)
        mesh_data = rcon.distribute_mesh(mesh)
    else:
        mesh_data = rcon.receive_mesh()

    discr = rcon.make_discretization(mesh_data, order=4)

    from hedge.timestep.runge_kutta import LSRK4TimeStepper
    stepper = LSRK4TimeStepper()

    from hedge.visualization import VtkVisualizer
    if write_output:
        vis = VtkVisualizer(discr, rcon, "fld")

    source_center = np.array([0.7, 0.4])
    source_width = 1/16
    source_omega = 3

    import hedge.optemplate as sym
    sym_x = sym.nodes(2)
    sym_source_center_dist = sym_x - source_center

    from hedge.models.wave import VariableVelocityStrongWaveOperator
    op = VariableVelocityStrongWaveOperator(
            c=sym.If(sym.Comparison(
                np.dot(sym_x, sym_x), "<", 0.4**2),
                1, 0.5),
            dimensions=discr.dimensions,
            source=
            sym.CFunction("sin")(source_omega*sym.ScalarParameter("t"))
            * sym.CFunction("exp")(
                -np.dot(sym_source_center_dist, sym_source_center_dist)
                / source_width**2),
            dirichlet_tag=dir_tag,
            neumann_tag=neu_tag,
            radiation_tag=rad_tag,
            flux_type=flux_type_arg
            )

    from hedge.tools import join_fields
    fields = join_fields(discr.volume_zeros(),
            [discr.volume_zeros() for i in range(discr.dimensions)])

    # {{{ diagnostics setup

    from pytools.log import LogManager, \
            add_general_quantities, \
            add_simulation_quantities, \
            add_run_info

    if write_output:
        log_file_name = "wave.dat"
    else:
        log_file_name = None

    logmgr = LogManager(log_file_name, "w", rcon.communicator)
    add_run_info(logmgr)
    add_general_quantities(logmgr)
    add_simulation_quantities(logmgr)
    discr.add_instrumentation(logmgr)

    from pytools.log import IntervalTimer
    vis_timer = IntervalTimer("t_vis", "Time spent visualizing")
    logmgr.add_quantity(vis_timer)
    stepper.add_instrumentation(logmgr)

    from hedge.log import LpNorm
    u_getter = lambda: fields[0]
    logmgr.add_quantity(LpNorm(u_getter, discr, 1, name="l1_u"))
    logmgr.add_quantity(LpNorm(u_getter, discr, name="l2_u"))

    logmgr.add_watches(["step.max", "t_sim.max", "l2_u", "t_step.max"])

    # }}}

    # {{{ timestep loop

    rhs = op.bind(discr)
    try:
        from hedge.timestep.stability import \
                approximate_rk4_relative_imag_stability_region
        max_dt = (
                1/discr.compile(op.max_eigenvalue_expr())()
                * discr.dt_non_geometric_factor()
                * discr.dt_geometric_factor()
                * approximate_rk4_relative_imag_stability_region(stepper))
        if flux_type_arg == "central":
            max_dt *= 0.25

        from hedge.timestep import times_and_steps
        step_it = times_and_steps(final_time=3, logmgr=logmgr,
                max_dt_getter=lambda t: max_dt)

        for step, t, dt in step_it:
            if step % 10 == 0 and write_output:
                visf = vis.make_file("fld-%04d" % step)

                vis.add_data(visf,
                        [
                            ("u", fields[0]),
                            ("v", fields[1:]),
                        ],
                        time=t,
                        step=step)
                visf.close()

            fields = stepper(fields, t, dt, rhs)

        assert discr.norm(fields) < 1
    finally:
        if write_output:
            vis.close()

        logmgr.close()
        discr.close()
Beispiel #36
0
def main(write_output=True, dtype=np.float32):
    from hedge.backends import guess_run_context
    rcon = guess_run_context()

    from hedge.mesh.generator import make_rect_mesh
    if rcon.is_head_rank:
        h_fac = 1
        mesh = make_rect_mesh(a=(0, 0),
                              b=(1, 1),
                              max_area=h_fac**2 * 1e-4,
                              periodicity=(True, True),
                              subdivisions=(int(70 / h_fac), int(70 / h_fac)))

    from hedge.models.gas_dynamics.lbm import \
            D2Q9LBMMethod, LatticeBoltzmannOperator

    op = LatticeBoltzmannOperator(D2Q9LBMMethod(), lbm_delta_t=0.001, nu=1e-4)

    if rcon.is_head_rank:
        print "%d elements" % len(mesh.elements)
        mesh_data = rcon.distribute_mesh(mesh)
    else:
        mesh_data = rcon.receive_mesh()

    discr = rcon.make_discretization(mesh_data,
                                     order=3,
                                     default_scalar_type=dtype,
                                     debug=["cuda_no_plan"])
    from hedge.timestep.runge_kutta import LSRK4TimeStepper
    stepper = LSRK4TimeStepper(
        dtype=dtype,
        #vector_primitive_factory=discr.get_vector_primitive_factory()
    )

    from hedge.visualization import VtkVisualizer
    if write_output:
        vis = VtkVisualizer(discr, rcon, "fld")

    from hedge.data import CompiledExpressionData

    def ic_expr(t, x, fields):
        from hedge.optemplate import CFunction
        from pymbolic.primitives import IfPositive
        from pytools.obj_array import make_obj_array

        tanh = CFunction("tanh")
        sin = CFunction("sin")

        rho = 1
        u0 = 0.05
        w = 0.05
        delta = 0.05

        from hedge.optemplate.primitives import make_common_subexpression as cse
        u = cse(
            make_obj_array([
                IfPositive(x[1] - 1 / 2, u0 * tanh(4 * (3 / 4 - x[1]) / w),
                           u0 * tanh(4 * (x[1] - 1 / 4) / w)),
                u0 * delta * sin(2 * np.pi * (x[0] + 1 / 4))
            ]), "u")

        return make_obj_array([
            op.method.f_equilibrium(rho, alpha, u)
            for alpha in range(len(op.method))
        ])

    # timestep loop -----------------------------------------------------------
    stream_rhs = op.bind_rhs(discr)
    collision_update = op.bind(discr, op.collision_update)
    get_rho = op.bind(discr, op.rho)
    get_rho_u = op.bind(discr, op.rho_u)

    f_bar = CompiledExpressionData(ic_expr).volume_interpolant(0, discr)

    from hedge.discretization import ExponentialFilterResponseFunction
    from hedge.optemplate.operators import FilterOperator
    mode_filter = FilterOperator(
            ExponentialFilterResponseFunction(min_amplification=0.9, order=4))\
                    .bind(discr)

    final_time = 1000
    try:
        lbm_dt = op.lbm_delta_t
        dg_dt = op.estimate_timestep(discr, stepper=stepper)
        print dg_dt

        dg_steps_per_lbm_step = int(np.ceil(lbm_dt / dg_dt))
        dg_dt = lbm_dt / dg_steps_per_lbm_step

        lbm_steps = int(final_time // op.lbm_delta_t)
        for step in xrange(lbm_steps):
            t = step * lbm_dt

            if step % 100 == 0 and write_output:
                visf = vis.make_file("fld-%04d" % step)

                rho = get_rho(f_bar)
                rho_u = get_rho_u(f_bar)
                vis.add_data(
                    visf,
                    [("fbar%d" % i, discr.convert_volume(f_bar_i, "numpy"))
                     for i, f_bar_i in enumerate(f_bar)] + [
                         ("rho", discr.convert_volume(rho, "numpy")),
                         ("rho_u", discr.convert_volume(rho_u, "numpy")),
                     ],
                    time=t,
                    step=step)
                visf.close()

            print "step=%d, t=%f" % (step, t)

            f_bar = collision_update(f_bar)

            for substep in range(dg_steps_per_lbm_step):
                f_bar = stepper(f_bar, t + substep * dg_dt, dg_dt, stream_rhs)

            #f_bar = mode_filter(f_bar)

    finally:
        if write_output:
            vis.close()

        discr.close()
Beispiel #37
0
def main(write_output=True):
    from math import sin, exp, sqrt  # noqa

    from hedge.mesh.generator import make_rect_mesh
    mesh = make_rect_mesh(a=(-0.5, -0.5), b=(0.5, 0.5), max_area=0.008)

    from hedge.backends.jit import Discretization

    discr = Discretization(mesh, order=4)

    from hedge.visualization import VtkVisualizer
    vis = VtkVisualizer(discr, None, "fld")

    source_center = np.array([0.1, 0.22])
    source_width = 0.05
    source_omega = 3

    import hedge.optemplate as sym
    sym_x = sym.nodes(2)
    sym_source_center_dist = sym_x - source_center

    from hedge.models.wave import StrongWaveOperator
    from hedge.mesh import TAG_ALL, TAG_NONE
    op = StrongWaveOperator(-0.1, discr.dimensions,
            source_f=
            sym.CFunction("sin")(source_omega*sym.ScalarParameter("t"))
            * sym.CFunction("exp")(
                -np.dot(sym_source_center_dist, sym_source_center_dist)
                / source_width**2),
            dirichlet_tag=TAG_NONE,
            neumann_tag=TAG_NONE,
            radiation_tag=TAG_ALL,
            flux_type="upwind")

    from hedge.tools import join_fields
    fields = join_fields(discr.volume_zeros(),
            [discr.volume_zeros() for i in range(discr.dimensions)])

    from hedge.timestep.runge_kutta import LSRK4TimeStepper
    stepper = LSRK4TimeStepper()
    dt = op.estimate_timestep(discr, stepper=stepper, fields=fields)

    nsteps = int(10/dt)
    print "dt=%g nsteps=%d" % (dt, nsteps)

    rhs = op.bind(discr)
    for step in range(nsteps):
        t = step*dt

        if step % 10 == 0 and write_output:
            print step, t, discr.norm(fields[0])
            visf = vis.make_file("fld-%04d" % step)

            vis.add_data(visf,
                    [("u", fields[0]), ("v", fields[1:]), ],
                    time=t, step=step)
            visf.close()

        fields = stepper(fields, t, dt, rhs)

    vis.close()
Beispiel #38
0
def main(write_output=True):
    from hedge.timestep.runge_kutta import LSRK4TimeStepper
    from math import sqrt, pi, exp

    from hedge.backends import guess_run_context
    rcon = guess_run_context()

    epsilon0 = 8.8541878176e-12  # C**2 / (N m**2)
    mu0 = 4 * pi * 1e-7  # N/A**2.
    epsilon = 1 * epsilon0
    mu = 1 * mu0

    c = 1 / sqrt(mu * epsilon)

    pml_width = 0.5
    #mesh = make_mesh(a=np.array((-1,-1,-1)), b=np.array((1,1,1)),
    #mesh = make_mesh(a=np.array((-3,-3)), b=np.array((3,3)),
    mesh = make_mesh(
        a=np.array((-1, -1)),
        b=np.array((1, 1)),
        #mesh = make_mesh(a=np.array((-2,-2)), b=np.array((2,2)),
        pml_width=pml_width,
        max_volume=0.01)

    if rcon.is_head_rank:
        mesh_data = rcon.distribute_mesh(mesh)
    else:
        mesh_data = rcon.receive_mesh()

    class Current:
        def volume_interpolant(self, t, discr):
            from hedge.tools import make_obj_array

            result = discr.volume_zeros(kind="numpy", dtype=np.float64)

            omega = 6 * c
            if omega * t > 2 * pi:
                return make_obj_array([result, result, result])

            x = make_obj_array(discr.nodes.T)
            r = np.sqrt(np.dot(x, x))

            idx = r < 0.3
            result[idx] = (1+np.cos(pi*r/0.3))[idx] \
                    *np.sin(omega*t)**3

            result = discr.convert_volume(result,
                                          kind=discr.compute_kind,
                                          dtype=discr.default_scalar_type)
            return make_obj_array([-result, result, result])

    order = 3
    discr = rcon.make_discretization(mesh_data,
                                     order=order,
                                     debug=["cuda_no_plan"])

    from hedge.visualization import VtkVisualizer
    if write_output:
        vis = VtkVisualizer(discr, rcon, "em-%d" % order)

    from hedge.mesh import TAG_ALL, TAG_NONE
    from hedge.data import GivenFunction, TimeHarmonicGivenFunction, TimeIntervalGivenFunction
    from hedge.models.em import MaxwellOperator
    from hedge.models.pml import \
            AbarbanelGottliebPMLMaxwellOperator, \
            AbarbanelGottliebPMLTMMaxwellOperator, \
            AbarbanelGottliebPMLTEMaxwellOperator

    op = AbarbanelGottliebPMLTEMaxwellOperator(epsilon,
                                               mu,
                                               flux_type=1,
                                               current=Current(),
                                               pec_tag=TAG_ALL,
                                               absorb_tag=TAG_NONE,
                                               add_decay=True)

    fields = op.assemble_ehpq(discr=discr)

    stepper = LSRK4TimeStepper()

    if rcon.is_head_rank:
        print "order %d" % order
        print "#elements=", len(mesh.elements)

    # diagnostics setup ---------------------------------------------------
    from pytools.log import LogManager, add_general_quantities, \
            add_simulation_quantities, add_run_info

    if write_output:
        log_file_name = "maxwell-%d.dat" % order
    else:
        log_file_name = None

    logmgr = LogManager(log_file_name, "w", rcon.communicator)
    add_run_info(logmgr)
    add_general_quantities(logmgr)
    add_simulation_quantities(logmgr)
    discr.add_instrumentation(logmgr)
    stepper.add_instrumentation(logmgr)

    from pytools.log import IntervalTimer
    vis_timer = IntervalTimer("t_vis", "Time spent visualizing")
    logmgr.add_quantity(vis_timer)

    from hedge.log import EMFieldGetter, add_em_quantities
    field_getter = EMFieldGetter(discr, op, lambda: fields)
    add_em_quantities(logmgr, op, field_getter)

    logmgr.add_watches(
        ["step.max", "t_sim.max", ("W_field", "W_el+W_mag"), "t_step.max"])

    from hedge.log import LpNorm

    class FieldIdxGetter:
        def __init__(self, whole_getter, idx):
            self.whole_getter = whole_getter
            self.idx = idx

        def __call__(self):
            return self.whole_getter()[self.idx]

    # timestep loop -------------------------------------------------------

    t = 0
    pml_coeff = op.coefficients_from_width(discr, width=pml_width)
    rhs = op.bind(discr, pml_coeff)

    try:
        from hedge.timestep import times_and_steps
        step_it = times_and_steps(
            final_time=4 / c,
            logmgr=logmgr,
            max_dt_getter=lambda t: op.estimate_timestep(
                discr, stepper=stepper, t=t, fields=fields))

        for step, t, dt in step_it:
            if step % 10 == 0 and write_output:
                e, h, p, q = op.split_ehpq(fields)
                visf = vis.make_file("em-%d-%04d" % (order, step))
                #pml_rhs_e, pml_rhs_h, pml_rhs_p, pml_rhs_q = \
                #op.split_ehpq(rhs(t, fields))
                j = Current().volume_interpolant(t, discr)
                vis.add_data(
                    visf,
                    [
                        ("e", discr.convert_volume(e, "numpy")),
                        ("h", discr.convert_volume(h, "numpy")),
                        ("p", discr.convert_volume(p, "numpy")),
                        ("q", discr.convert_volume(q, "numpy")),
                        ("j", discr.convert_volume(j, "numpy")),
                        #("pml_rhs_e", pml_rhs_e),
                        #("pml_rhs_h", pml_rhs_h),
                        #("pml_rhs_p", pml_rhs_p),
                        #("pml_rhs_q", pml_rhs_q),
                        #("max_rhs_e", max_rhs_e),
                        #("max_rhs_h", max_rhs_h),
                        #("max_rhs_p", max_rhs_p),
                        #("max_rhs_q", max_rhs_q),
                    ],
                    time=t,
                    step=step)
                visf.close()

            fields = stepper(fields, t, dt, rhs)

        _, _, energies_data = logmgr.get_expr_dataset("W_el+W_mag")
        energies = [value for tick_nbr, value in energies_data]

        assert energies[-1] < max(energies) * 1e-2

    finally:
        logmgr.close()

        if write_output:
            vis.close()
Beispiel #39
0
def main():
    from hedge.backends import guess_run_context

    rcon = guess_run_context()

    from hedge.tools import to_obj_array

    if rcon.is_head_rank:
        from hedge.mesh.generator import make_rect_mesh

        mesh = make_rect_mesh((-5, -5), (5, 5), max_area=0.01)
        mesh_data = rcon.distribute_mesh(mesh)
    else:
        mesh_data = rcon.receive_mesh()

    for order in [1]:
        discr = rcon.make_discretization(mesh_data, order=order, default_scalar_type=numpy.float64)

        from hedge.visualization import SiloVisualizer, VtkVisualizer

        vis = VtkVisualizer(discr, rcon, "Sod2D-%d" % order)
        # vis = SiloVisualizer(discr, rcon)

        sod_field = Sod(gamma=1.4)
        fields = sod_field.volume_interpolant(0, discr)

        from hedge.models.gas_dynamics import GasDynamicsOperator
        from hedge.mesh import TAG_ALL

        op = GasDynamicsOperator(
            dimensions=2,
            gamma=sod_field.gamma,
            mu=0.0,
            prandtl=sod_field.prandtl,
            bc_inflow=sod_field,
            bc_outflow=sod_field,
            bc_noslip=sod_field,
            inflow_tag=TAG_ALL,
            source=None,
        )

        euler_ex = op.bind(discr)

        max_eigval = [0]

        def rhs(t, q):
            ode_rhs, speed = euler_ex(t, q)
            max_eigval[0] = speed
            return ode_rhs

        rhs(0, fields)

        if rcon.is_head_rank:
            print "---------------------------------------------"
            print "order %d" % order
            print "---------------------------------------------"
            print "#elements=", len(mesh.elements)

        # limiter setup ------------------------------------------------------------
        from hedge.models.gas_dynamics import SlopeLimiter1NEuler

        limiter = SlopeLimiter1NEuler(discr, sod_field.gamma, 2, op)

        # integrator setup---------------------------------------------------------
        from hedge.timestep import SSPRK3TimeStepper, RK4TimeStepper

        stepper = SSPRK3TimeStepper(limiter=limiter)
        # stepper = SSPRK3TimeStepper()
        # stepper = RK4TimeStepper()

        # diagnostics setup ---------------------------------------------------
        from pytools.log import LogManager, add_general_quantities, add_simulation_quantities, add_run_info

        logmgr = LogManager("euler-%d.dat" % order, "w", rcon.communicator)
        add_run_info(logmgr)
        add_general_quantities(logmgr)
        add_simulation_quantities(logmgr)
        discr.add_instrumentation(logmgr)
        stepper.add_instrumentation(logmgr)

        logmgr.add_watches(["step.max", "t_sim.max", "t_step.max"])

        # filter setup-------------------------------------------------------------
        from hedge.discretization import Filter, ExponentialFilterResponseFunction

        mode_filter = Filter(discr, ExponentialFilterResponseFunction(min_amplification=0.9, order=4))

        # timestep loop -------------------------------------------------------
        try:
            from hedge.timestep import times_and_steps

            step_it = times_and_steps(
                final_time=1.0,
                logmgr=logmgr,
                max_dt_getter=lambda t: op.estimate_timestep(discr, stepper=stepper, t=t, max_eigenvalue=max_eigval[0]),
            )

            for step, t, dt in step_it:
                if step % 5 == 0:
                    # if False:
                    visf = vis.make_file("vortex-%d-%04d" % (order, step))

                    # true_fields = vortex.volume_interpolant(t, discr)

                    # from pyvisfile.silo import DB_VARTYPE_VECTOR
                    vis.add_data(
                        visf,
                        [
                            ("rho", discr.convert_volume(op.rho(fields), kind="numpy")),
                            ("e", discr.convert_volume(op.e(fields), kind="numpy")),
                            ("rho_u", discr.convert_volume(op.rho_u(fields), kind="numpy")),
                            ("u", discr.convert_volume(op.u(fields), kind="numpy")),
                            # ("true_rho", op.rho(true_fields)),
                            # ("true_e", op.e(true_fields)),
                            # ("true_rho_u", op.rho_u(true_fields)),
                            # ("true_u", op.u(true_fields)),
                            # ("rhs_rho", op.rho(rhs_fields)),
                            # ("rhs_e", op.e(rhs_fields)),
                            # ("rhs_rho_u", op.rho_u(rhs_fields)),
                        ],
                        # expressions=[
                        # ("diff_rho", "rho-true_rho"),
                        # ("diff_e", "e-true_e"),
                        # ("diff_rho_u", "rho_u-true_rho_u", DB_VARTYPE_VECTOR),
                        # ("p", "0.4*(e- 0.5*(rho_u*u))"),
                        # ],
                        time=t,
                        step=step,
                    )
                    visf.close()

                fields = stepper(fields, t, dt, rhs)
                # fields = limiter(fields)
                # fields = mode_filter(fields)

                assert not numpy.isnan(numpy.sum(fields[0]))
        finally:
            vis.close()
            logmgr.close()
            discr.close()

        # not solution, just to check against when making code changes
        true_fields = sod_field.volume_interpolant(t, discr)
        print discr.norm(fields - true_fields)
Beispiel #40
0
def main(final_time=1, write_output=False):
    from hedge.backends import guess_run_context
    rcon = guess_run_context()

    from hedge.tools import EOCRecorder, to_obj_array
    eoc_rec = EOCRecorder()

    if rcon.is_head_rank:
        from hedge.mesh import make_box_mesh
        mesh = make_box_mesh((0, 0, 0), (10, 10, 10), max_volume=0.5)
        mesh_data = rcon.distribute_mesh(mesh)
    else:
        mesh_data = rcon.receive_mesh()

    for order in [3, 4, 5]:
        discr = rcon.make_discretization(mesh_data,
                                         order=order,
                                         default_scalar_type=numpy.float64)

        from hedge.visualization import SiloVisualizer, VtkVisualizer
        vis = VtkVisualizer(discr, rcon, "sinewave-%d" % order)
        #vis = SiloVisualizer(discr, rcon)

        sinewave = SineWave()
        fields = sinewave.volume_interpolant(0, discr)
        gamma, mu, prandtl, spec_gas_const = sinewave.properties()

        from hedge.mesh import TAG_ALL
        from hedge.models.gas_dynamics import GasDynamicsOperator
        op = GasDynamicsOperator(dimensions=mesh.dimensions,
                                 gamma=gamma,
                                 mu=mu,
                                 prandtl=prandtl,
                                 spec_gas_const=spec_gas_const,
                                 bc_inflow=sinewave,
                                 bc_outflow=sinewave,
                                 bc_noslip=sinewave,
                                 inflow_tag=TAG_ALL,
                                 source=None)

        euler_ex = op.bind(discr)

        max_eigval = [0]

        def rhs(t, q):
            ode_rhs, speed = euler_ex(t, q)
            max_eigval[0] = speed
            return ode_rhs

        rhs(0, fields)

        if rcon.is_head_rank:
            print "---------------------------------------------"
            print "order %d" % order
            print "---------------------------------------------"
            print "#elements=", len(mesh.elements)

        from hedge.timestep import RK4TimeStepper
        stepper = RK4TimeStepper()

        # diagnostics setup ---------------------------------------------------
        from pytools.log import LogManager, add_general_quantities, \
                add_simulation_quantities, add_run_info

        if write_output:
            log_name = ("euler-sinewave-%(order)d-%(els)d.dat" % {
                "order": order,
                "els": len(mesh.elements)
            })
        else:
            log_name = False
        logmgr = LogManager(log_name, "w", rcon.communicator)
        add_run_info(logmgr)
        add_general_quantities(logmgr)
        add_simulation_quantities(logmgr)
        discr.add_instrumentation(logmgr)
        stepper.add_instrumentation(logmgr)

        logmgr.add_watches(["step.max", "t_sim.max", "t_step.max"])

        # timestep loop -------------------------------------------------------
        try:
            from hedge.timestep import times_and_steps
            step_it = times_and_steps(
                final_time=final_time,
                logmgr=logmgr,
                max_dt_getter=lambda t: op.estimate_timestep(
                    discr, stepper=stepper, t=t, max_eigenvalue=max_eigval[0]))

            for step, t, dt in step_it:
                #if step % 10 == 0:
                if write_output:
                    visf = vis.make_file("sinewave-%d-%04d" % (order, step))

                    #from pyvisfile.silo import DB_VARTYPE_VECTOR
                    vis.add_data(
                        visf,
                        [
                            ("rho",
                             discr.convert_volume(op.rho(fields),
                                                  kind="numpy")),
                            ("e",
                             discr.convert_volume(op.e(fields), kind="numpy")),
                            ("rho_u",
                             discr.convert_volume(op.rho_u(fields),
                                                  kind="numpy")),
                            ("u",
                             discr.convert_volume(op.u(fields), kind="numpy")),

                            #("true_rho", op.rho(true_fields)),
                            #("true_e", op.e(true_fields)),
                            #("true_rho_u", op.rho_u(true_fields)),
                            #("true_u", op.u(true_fields)),

                            #("rhs_rho", op.rho(rhs_fields)),
                            #("rhs_e", op.e(rhs_fields)),
                            #("rhs_rho_u", op.rho_u(rhs_fields)),
                        ],
                        #expressions=[
                        #("diff_rho", "rho-true_rho"),
                        #("diff_e", "e-true_e"),
                        #("diff_rho_u", "rho_u-true_rho_u", DB_VARTYPE_VECTOR),

                        #("p", "0.4*(e- 0.5*(rho_u*u))"),
                        #],
                        time=t,
                        step=step)
                    visf.close()

                fields = stepper(fields, t, dt, rhs)

        finally:
            vis.close()
            logmgr.close()
            discr.close()

        true_fields = sinewave.volume_interpolant(t, discr)
        eoc_rec.add_data_point(order, discr.norm(fields - true_fields))
        print
        print eoc_rec.pretty_print("P.Deg.", "L2 Error")
def main(write_output=['vtu', 'receivers'],
         allow_features='',
         dim=2,
         order=4,
         stfree_tag=TAG_NONE,
         fix_tag=TAG_ALL,
         op_tag=TAG_NONE,
         flux_type="lf",
         max_steps=None,
         output_dir='output',
         pml=None,
         sources=None,
         source_param={},
         final_time=12,
         quiet_output=True,
         nonlinearity_type=None,
         mesh_file='',
         periodicity=None,
         material_files=None,
         vtu_every=20):
    """
    Parameters:
    @param write_output: output data, among 'vtu', 'receivers' and 'txt'
    @param allow_features: 'mpi' or 'cuda'
    @param dim: 1, 2 or 3
    @param order: the order of the method
    @param stfree_tag: which elements to mark as stress-free boundaries
    @param fix_tag: which elements to mark as fixed boundaries
    @param op_tag: which elements to mark as open boundaries
    @param flux_type: 'lf' (Lax-Freidrich flux) or 'central'
    @param max_steps: None (no limit) or maximum number of steps to compute
    @param output_dir: directory where to write the output
    @param pml: None or NPML widths in this order: [x_l, y_l, z_l, x_r, y_r, z_r]
    @param sources: an array containing the coordinates of the source or None
    @param source_param: a dict containing the parameters for the source functions
    @param final_time: number of seconds of simulations to compute
    @param quiet_output: if True, only the main thread will print information
    @param nonlinearity_type: None (linear) or 'classical' (non-linear)
    @param mesh_file: the file to use as a mesh, or '' in 1D
    @param periodicity: the names of the boundaries to stick together, or None
    @param material_files: array, the material files (.dat) to use
    @param vtu_every: n, to write a vtu file every n steps
    """
    rcon = guess_run_context(allow_features)
    rcon_init = guess_run_context(allow_features)

    debug = ['dump_optemplate_stages']
    dtype = numpy.float64
    if 'cuda' in allow_features:
        dtype = numpy.float32
        debug.append('cuda_no_plan')

    if rcon.is_head_rank and output_dir and not access(output_dir, F_OK):
        makedirs(output_dir)

    if quiet_output:
        print_output = rcon.is_head_rank
    else:
        print_output = True
    if print_output:
        print "Using features:", ', '.join(allow_features).upper()
        nbranks = len(rcon.ranks)
        print "Using", nbranks, "rank" + ('s' if nbranks > 1 else '')
        print "Using", dim, "dimension" + ('s' if dim > 1 else '')
        print "Rank", rcon.rank, "will print its output."
    else:
        print "Rank", rcon.rank, "will be silent."

    class Receiver():
        pass

    assert dim in [1, 2, 3], 'Bad number of dimensions'

    # Define mesh ---

    mesh = None
    if mesh_file != '':
        mesh = read_gmsh(mesh_file,
                         force_dimension=dim,
                         periodicity=periodicity,
                         allow_internal_boundaries=False,
                         tag_mapper=lambda tag: tag)
    elif dim == 1:
        from hedge.mesh.generator import make_uniform_1d_mesh
        mesh = make_uniform_1d_mesh(-10, 10, 500)
    else:
        raise Exception('Error: No mesh file specified!')

    if rcon.is_head_rank:
        print "Using %d elements and order %d" % (len(mesh.elements), order)
        mesh_data = rcon.distribute_mesh(mesh)
        mesh_init = rcon_init.distribute_mesh(mesh)
    else:
        mesh_data = rcon.receive_mesh()
        mesh_init = rcon_init.receive_mesh()

    if mesh_file:
        from libraries.gmsh_reader import GmshReader
        gmsh = GmshReader(mesh_file, dim, print_output)

    # End of mesh definition ---
    # Define sources ---

    source = None

    if sources is not None:
        #FIXME: "Multiple source points are currently unsupported"
        source = sources
        if print_output:
            print "Using specified source", source
    else:
        if print_output:
            print "No source specified",
        if mesh_file:
            if print_output:
                print "trying to find one in", mesh_file
            sources = gmsh.pointSources
            if sources != []:
                source = sources[0]
                if print_output:
                    print "Using source", source, "from", mesh_file
            else:
                if print_output:
                    print "Error: no source!"
        else:
            if print_output:
                print "and no mesh file!"
            raise Exception('Error: Could not find any source!')

    def source_v_x(pos, el):
        pos = pos - source
        #return exp(-numpy.dot(pos, pos) / source_param['sigma'] ** 2)
        return exp(- pos[0]**2 / source_param['sigma'] ** 2)

    def source_v_y(pos, el):
        pos = pos - source
        return 0

    def source_v_z(pos, el):
        pos = pos - source
        return 0

    source_type = None
    if source_param['type'] == 'Sinus':
        from libraries.functions import SinusGivenFunction
        source_type = 'SinusGivenFunction'
    elif source_param['type'] == 'SineBurst':
        from libraries.functions import SineBurstGivenFunction
        source_type = 'SineBurstGivenFunction'
    elif source_param['type'] == 'Modulated_sinus':
        from libraries.functions import ModulatedSinusGivenFunction
        source_type = 'ModulatedSinusGivenFunction'
    elif source_param['type'] == 'Ricker':
        from libraries.functions import TimeRickerWaveletGivenFunction
        source_type = 'TimeRickerWaveletGivenFunction'
    assert source_type is not None, "Failed to define source function!"
    source_function = locals()[source_type]
    print "Using source type:", source_type

    from hedge.data import make_tdep_given, TimeIntervalGivenFunction

    def source_i(source_v_i):
        return TimeIntervalGivenFunction(
                   source_function(make_tdep_given(source_v_i),
                                   source_param['fc'], source_param['td']),
                   source_param['begin'], source_param['end'])

    sources = {'source_x': source_i(source_v_x),
               'source_y': source_i(source_v_y),
               'source_z': source_i(source_v_z)}

    # End of sources definition ---
    # Define materials and link them with elements ---

    materials = []
    constants = ['Density', 'LinearElasticConstants']
    if nonlinearity_type == 'cubic':
        constants.append('ElasticConstant_lambda')
        constants.append('ElasticConstant_mu')
        constants.append('QuadraticElasticConstant_f')
        constants.append('CubicElasticConstant_h')
    elif nonlinearity_type is not None:
        constants.append('NonlinearElasticConstants')
    for material_file in material_files:
        material = Material(material_file, constants, dtype, print_output)
        if nonlinearity_type == 'cubic':
            assert material.lambda_ is not None, "Error: Missing elastic constant lambda in " + file
            assert material.mu is not None, "Error: Missing elastic constant mu in " + file
            assert material.f is not None, "Error: Missing quadratic constant f in " + file
            assert material.h is not None, "Error: Missing cubic constant h in " + file
        elif nonlinearity_type is not None:
            # In the nonlinear mode, materials MUST have a nonlinear constants
            assert material.Cnl is not None, "Error: Missing nonlinear constants in " + file
        materials.append(material)
    assert len(materials) > 0, "Error: You must define at least 1 material."

    # Work out which elements belong to each material
    material_elements = []
    used_materials = []
    speeds = []

    for num, name in [(0, 'mat1'), (1, 'mat2'), (2, 'mat3')]:
        if len(materials) > num:
            if name in mesh_init.tag_to_elements.keys():
                elements_list = [el.id for el in mesh_init.tag_to_elements[name]]
                material_elements.append(elements_list)
        else:
            num = 0
        speed = (materials[num].C[0, 0] / materials[num].rho) ** 0.5
        speeds.append(speed.astype(dtype))
        used_materials.append(materials[num])
        if print_output:
            print "Using", materials[num].filename, "as", name

    speed = max(speeds)

    if print_output:
        print "Using max speed:", speed, "m/s"

    def mat_val(x, el):
        # Will be used in Evaluate(mat, val)
        for i in range(len(material_elements)):
            if el.id in material_elements[i]:
                return i
        return 0

    # End of materials definition ---
    # Define the elastodynamics operator and the discretization ---

    kwargs = {
              'dimensions': dim,
              'speed': speed,
              'material': make_tdep_given(mat_val),
              'sources': sources,
              'boundaryconditions_tag': \
                    {'stressfree': stfree_tag,
                     'fixed': fix_tag,
                     'open': op_tag},
              'materials': used_materials,
              'flux_type': flux_type
              }

    operator = None
    if nonlinearity_type == 'cubic':
        kwargs['nonlinearity_type'] = nonlinearity_type
        if pml:
            from elastodynamic import CubicNPMLElastoDynamicsOperator
            operator = 'CubicNPMLElastoDynamicsOperator'
        else:
            raise NotImplementedError
    elif nonlinearity_type is not None:
        kwargs['nonlinearity_type'] = nonlinearity_type
        if pml:
            from elastodynamic import QuadraticNPMLElastoDynamicsOperator
            operator = 'QuadraticNPMLElastoDynamicsOperator'
        else:
            from elastodynamic import QuadraticElastoDynamicsOperator
            operator = 'QuadraticElastoDynamicsOperator'
    else:
        if pml:
            from elastodynamic import NPMLElastoDynamicsOperator
            operator = "NPMLElastoDynamicsOperator"
        else:
            from elastodynamic import ElastoDynamicsOperator
            operator = "ElastoDynamicsOperator"

    assert operator is not None, "Failed to define operator!"
    op = locals()[operator](**kwargs)
    if print_output:
        print "Using", operator

    discr = rcon.make_discretization(mesh_data, order=order, debug=debug, tune_for=op.op_template())

    # End of elastodynamics operator and discretization definition ---
    # Define receivers ---

    receivers = []
    point_receivers = []
    if write_output and print_output:
        print "Using output dir:", output_dir
    if "receivers" in write_output:
        i = 0
        if mesh_file:
            receivers = gmsh.pointReceivers
        if receivers != []:
            for receiver in receivers:
                try:
                    point_receiver = Receiver()
                    point_receiver.evaluator = discr.get_point_evaluator(numpy.array(receiver))
                    point_receiver.done_dt = False
                    point_receiver.id = i
                    point_receiver.coordinates = receiver
                    point_receiver.filename = "receiver_%s.txt" % repr(point_receiver.coordinates)
                except:
                    if not quiet_output:
                        print "Receiver ignored (point not found):", receiver
                else:
                    point_receivers.append(point_receiver)
                    i += 1
                    print "Using", point_receiver.filename, "for receiver", receiver

    # End of receivers definition ---
    # Define visualization ---

    def write_datafile(filename, variables):
        if rcon is not None and len(rcon.ranks) > 1:
            filename += "-%04d" % rcon.rank
        visfile = open(filename + ".txt", "wt")
        visfile.write("x\ty\t")
        for name, field in variables:
            if name == "m":
                visfile.write("m\t")
            else:
                i = 0
                for subvect in field:
                    i += 1
                    assert len(subvect) == len(discr.nodes), "Wrong length!"
                    visfile.write(name + "_" + format(i) + "\t")
        visfile.write("\n")
        for i in range(len(discr.nodes)):
            for coord in discr.nodes[i]:
                visfile.write(format(coord) + "\t")
            for name, field in variables:
                if name == "m":
                    visfile.write(format(field[i]) + "\t")
                else:
                    for subvect in field:
                        visfile.write(format(subvect[i]) + "\t")
            visfile.write("\n")
        visfile.close()

    if 'vtu' in write_output:
        from hedge.visualization import VtkVisualizer
        vis = VtkVisualizer(discr, rcon, 'fld')

    if output_dir:
        chdir(output_dir)

    if 'receivers' in write_output:
        for point_receiver in point_receivers:
            point_receiver.pointfile = open(point_receiver.filename, "wt")
        #sumfile = open("receiver_%s_sum.txt" % rcon.rank, "wt")

    # End of visualization definition ---
    # Bind the operator to the discretization ---

    if pml:
        coefficients = op.coefficients_from_width(discr, mesh, widths=pml,
                                                  material=materials[0],
                                                  alpha_magnitude=2 * pi * source_param['fc'] / 10)
        rhs = op.bind(discr, coefficients)
    else:
        rhs = op.bind(discr)

    # End of operator binding ---
    # Define the timestep loop ---

    t = 0.0
    max_txt = ''
    try:
        len_fields = op.len_q
        if pml:
            len_fields += op.len_f2
        fields = make_obj_array([discr.volume_zeros(dtype=dtype) for _ in range(len_fields)])

        vector_primitive_factory = None if 'cuda' in allow_features else discr.get_vector_primitive_factory()

        from hedge.timestep import times_and_steps, LSRK4TimeStepper
        stepper = LSRK4TimeStepper(vector_primitive_factory=vector_primitive_factory, dtype=dtype)
        max_dt_getter = lambda t: op.estimate_timestep(discr, stepper=stepper, t=t, fields=fields)
        step_it = times_and_steps(final_time=final_time, logmgr=None, max_dt_getter=max_dt_getter)

        for step, t, dt in step_it:
            if max_steps > 0:
                max_txt = ' on %d' % max_steps
                if step > max_steps:
                    break

            if step % vtu_every == 0:
                variables = [("m", discr.convert_volume(op.m(fields), "numpy")),
                             ("v", discr.convert_volume(op.v(fields), "numpy")),
                             ("F", discr.convert_volume(op.F(fields), "numpy"))]

                if print_output:
                    print time.strftime('[%H:%M:%S] ', time.localtime()) + \
                          'Step: ' + format(step) + max_txt + '; time: ' + format(t)

                if 'vtu' in write_output:
                    visf = vis.make_file("fld-%04d" % step)
                    vis.add_data(visf, variables, time=t, step=step)
                    visf.close()

                if 'txt' in write_output:
                    write_datafile("fld-%04d" % step, variables)

            if 'receivers' in write_output and point_receivers != []:
                variables = discr.convert_volume(fields, "numpy")
                #sum_val = numpy.zeros(len(fields))
                #sumfile.write("\n%s " % format(t))
                for point_receiver in point_receivers:
                    val = point_receiver.evaluator(variables)
                    if not point_receiver.done_dt:
                        point_receiver.pointfile.write("# dt: %g s\n" % dt)
                        point_receiver.pointfile.write("# m: 1 field\n")
                        point_receiver.pointfile.write("# v: %d fields\n" % dim)
                        point_receiver.pointfile.write("# F: %d fields\n" % op.len_f)
                        point_receiver.pointfile.write("# Coordinates: %s\n# t m " % repr(point_receiver.coordinates))
                        for i in range(dim):
                            point_receiver.pointfile.write('v%s ' % i)
                        for i in range(op.len_f):
                            point_receiver.pointfile.write("F%s " % i)
                        point_receiver.done_dt = True
                    point_receiver.pointfile.write("\n%s " % format(t))
                    for i in range(1 + dim + op.len_f):
                        #sum_val[i] += val[i]
                        point_receiver.pointfile.write("%s " % format(val[i]))

                #for i in range(len(val)):
                    #sumfile.write("%s " % format(sum_val[i]))

            fields = stepper(fields, t, dt, rhs)

    finally:
        if 'vtu' in write_output:
            vis.close()

        if 'receivers' in write_output:
            for point_receiver in point_receivers:
                point_receiver.pointfile.close()
            #sumfile.close()

        discr.close()
        if output_dir:
            chdir('..')