Beispiel #1
0
def synthetic_phase_shift_cyl(d, lmbda):
    """
    Synthetic phase shift for a cylindrical simulation
    Parameters:
    -----------
      - d [dict]:  dictionary data containing fields (2D ndarrays), at least
          - r: radius array [cm] (must be equidistant)
          - z: height array [cm] (must be equidistant)
          - nele: electron density [cm⁻³]
      - lmbda: probe wavelenght [nm]

    Returns:
    --------
      - phase shift: 2D ndarray
    """
    Ne = d['nele']
    Nc = critical_density(lmbda)

    mu = np.sqrt(1 - Ne / Nc) - 1
    mu[Ne > Nc] = np.nan

    dr = np.diff(d['x'])[0, 0]
    mu_dl = abel(mu, dr) / (2 * lmbda * 1e-9 * 1e2)

    return np.ma.array(mu_dl, mask=np.isnan(mu_dl))
Beispiel #2
0
def synthetic_phase_shift_cyl(d, lmbda):
    """
    Synthetic phase shift for a cylindrical simulation
    Parameters:
    -----------
      - d [dict]:  dictionary data containing fields (2D ndarrays), at least
          - r: radius array [cm] (must be equidistant)
          - z: height array [cm] (must be equidistant)
          - nele: electron density [cm⁻³]
      - lmbda: probe wavelenght [nm]

    Returns:
    --------
      - phase shift: 2D ndarray
    """
    Ne = d['nele']
    Nc = critical_density(lmbda)

    mu = np.sqrt(1 - Ne/Nc) - 1
    mu[Ne>Nc] = np.nan

    dr = np.diff(d['x'])[0,0]
    mu_dl = abel(mu, dr)/(2*lmbda*1e-9*1e2)
    
    return  np.ma.array(mu_dl, mask=np.isnan(mu_dl))
Beispiel #3
0
def synthetic_shadowgraphy_cyl(d, lmbda, L=10, absorption=True, refraction=False):
    """
    Compute angle of refraction for a plasma assuming cylindrical symmetry on an axis
    orthogonal to the propagation axis.

    Parameters:
    -----------
      - d [dict]:  dictionary data containing fields (2D ndarrays), at least
          - r: radius array [cm] (must be equidistant)
          - z: height array [cm] (must be equidistant)
          - dens: solid density [g.cm⁻³]
          - Abar: mean atomic mass [g.mol⁻¹]
          - Zbar: mean ionization
      - lmbda: probe wavelenght [nm]
      - L: distance to detector [cm]
    Returns:
    --------
      - theta: 2D ndarray: refracted angle

    Source: Shlieren and shadowgraph techniques. G.Settles 
    """
    dI = np.ones(d['nele'].shape)
    Ne = d['nele']
    Nc = critical_density(lmbda)

    if refraction:
        # this doesn't seem to work so well

        Ref = 1 - np.sqrt(1 - Ne/Nc)
        Ref[Ne>Nc] = np.nan


        dr = np.diff(d['r'])[0,0]
        Ref_dl = abel(Ref, dr)
        d2Ref_dl = laplace(Ref_dl, dr)
        #pval =  (np.abs(np.gradient(Ref_dl)[0])/dr + np.abs(np.gradient(Ref_dl)[1])/dr)*180/np.pi
        #return d2Ref_dl
        dI0 = 1./(1. + d2Ref_dl)
        dI *= dI0
    if absorption:
        from scipy.constants import c
        nu_ei = 3e-6*d['nele']*d['Zbar']*10/d['tele']**(3./2)
        nu_ei = 1.0
        print(Nc)
        kernel = nu_ei*(Ne/Nc)/(c*(1 - Ne/Nc)**0.5)
        dr = np.diff(d['r'])[0,0]
        print(dr)
        kappa = kernel
        #kappa = abel(kernel, dr)
        dI0 = kappa#np.exp(-kappa)
        dI *= dI0
    return dI