Beispiel #1
0
def bgoa():
    agents = helper.init()
    fitness = helper.fitness(agents)
    inds = fitness.argsort()
    agents = agents[inds]
    target = agents[0]
    maxscore = helper.fitness(np.asarray([target]))
    dist = np.zeros((meta.ns,meta.ns))
    for l in range(meta.L):
        print("Iteration : ",l+1)
        c = meta.cmax - l * (meta.cmax-meta.cmin)/meta.L
        dmin = sys.float_info.max    
        dmax = 0
        for i in range(meta.ns):
            for j in range(meta.ns):
                if j==i:
                    continue
                dist[i][j] = dist[j][i] = np.linalg.norm(agents[i]-agents[j])
                dmax = max(dist[i][j],dmax)
                dmin = min(dist[i][j],dmin)
        dist = np.interp(dist,(dmin,dmax),(1,4))
        dT = np.zeros((meta.ns,meta.dim))
        for i in range(meta.ns):
            upd = np.zeros(meta.dim)
            for d in range(meta.dim):
                for j in range(meta.ns):
                    if(i==j):
                        continue
                    upd[d] += social(math.fabs(agents[j][d] - agents[i][d])) * (agents[j][d] - agents[i][d]) / dist[i][j]
            upd = upd * (c*c*0.5)
            T = np.array([sigmoid(x) for x in upd])
            dT[i] = T
        # print("Updating Vectors")
        for i in range(meta.ns):
            for j in range(meta.dim):
                r = np.random.rand(1)
                if(r>=dT[i][j]):
                    agents[i][j] = 0
                else:
                    agents[i][j] = 1
        fitness = helper.fitness(agents)
        inds = fitness.argsort()
        score = helper.fitness(np.asarray([agents[inds[0]]]))
        if(score > maxscore):
            target = agents[inds[0]]
            maxscore = score
        print(maxscore)
    return target
def randomized_improvement(coords, method, stopping_iteration=1000):
    nb_coords = len(coords)

    best_solution = list(range(nb_coords))
    best_fitness = fitness(coords, best_solution)

    steps = []
    for iteration in range(stopping_iteration):
        candidate_solution = method(best_solution)
        candidate_fitness = fitness(coords, candidate_solution)

        if candidate_fitness < best_fitness:
            best_fitness, best_solution = candidate_fitness, candidate_solution

        steps.append(best_solution)

    return best_fitness, best_solution, steps
Beispiel #3
0
def simulated_annealing(coords, stopping_iteration=1000, alpha = 0.9985):
    nb_coords = len(coords)
    T = nb_coords

    current_solution = list(range(nb_coords))
    current_fitness = fitness(coords, current_solution)

    best_solution = current_solution
    best_fitness = current_fitness

    iteration = 1
    steps = []
    while iteration < stopping_iteration:
        # choose operation
        # if np.random.randint(2) == 0:
        #     candidate_solution = transport(current_solution)
        # else:
        #     candidate_solution = reverse(current_solution)

        candidate_solution = list(current_solution)
        l = np.random.randint(2, T + 1) # lower temperature - smaller changes
        i = np.random.randint(0, nb_coords)
        candidate_solution[i: (i + l)] = reversed(candidate_solution[i: (i + l)])


        # Accept with probability 1 if candidate is better than current.
        # Accept with probability exp(-∆E/T) if candidate is worse.
        candidate_fitness = fitness(coords, candidate_solution)
        if candidate_fitness < current_fitness:
            current_fitness, current_solution = candidate_fitness, candidate_solution
            if candidate_fitness < best_fitness:
                best_fitness, best_solution = candidate_fitness, candidate_solution
        else:
            probability = np.exp(-(candidate_fitness - current_fitness) / T)
            if np.random.random() < probability:
                current_fitness, current_solution = candidate_fitness, candidate_solution

        T *= alpha
        iteration += 1
        steps.append(best_solution)

    return best_fitness, best_solution, steps
Beispiel #4
0
    def population_fitness(self, population):
        population_fitness = {}
        for i, individual in enumerate(population):
            # 1/fitness -> change to maximization problem
            population_fitness[i] = 1 / fitness(self.coords, individual)

        return {
            k: v
            for k, v in sorted(population_fitness.items(),
                               key=lambda item: item[1],
                               reverse=True)
        }
Beispiel #5
0
def genetic(coords, generations=500, population_size=100, elite_size=10, mutation_rate=0.01):
    genetic = Genetic(coords, population_size=population_size, elitist_factor=elite_size, mutation_rate=mutation_rate)

    population = genetic.initial_population()
    steps = []
    for i in range(generations):
        population = genetic.next_generation(population)
        best_solution = genetic.best_solution(population)
        steps.append(best_solution)

    best_fitness = fitness(coords, best_solution)

    return best_fitness, best_solution, steps