def generate_stat_data(self, filename):
		eval_poses = helper.read_poses(FLAGS.data_dict, FLAGS.eval_poses)
		template_data = self.templates[self.template_idx,:,:].reshape((1,MAX_NUM_POINT,3))
		TIME, ITR, Trans_Err, Rot_Err = [], [], [], []
		for pose in eval_poses:
			source_data = helper.apply_transformation(self.templates[self.template_idx,:,:],pose.reshape((-1,6)))
			final_pose, _, _, _, _, elapsed_time, itr = self.test_one_case(source_data,template_data)
			translation_error, rotational_error = self.find_errors(pose.reshape((-1,6)), final_pose)
			TIME.append(elapsed_time)
			ITR.append(itr)
			Trans_Err.append(translation_error)
			Rot_Err.append(rotational_error)
		
		TIME_mean, ITR_mean, Trans_Err_mean, Rot_Err_mean = sum(TIME)/len(TIME), sum(ITR)/len(ITR), sum(Trans_Err)/len(Trans_Err), sum(Rot_Err)/len(Rot_Err)
		TIME_var, ITR_var, Trans_Err_var, Rot_Err_var = np.var(np.array(TIME)), np.var(np.array(ITR)), np.var(np.array(Trans_Err)), np.var(np.array(Rot_Err))
		import csv
		with open(filename + '.csv','w') as csvfile:
			csvwriter = csv.writer(csvfile)
			for i in range(len(TIME)):
				csvwriter.writerow([i, TIME[i], ITR[i], Trans_Err[i], Rot_Err[i]])
		with open(filename+'.txt','w') as file:
			file.write("Mean of Time: {}".format(TIME_mean))
			file.write("Mean of Iterations: {}".format(ITR_mean))
			file.write("Mean of Translation Error: {}".format(Trans_Err_mean))
			file.write("Mean of Rotation Error: {}".format(Rot_Err_mean))

			file.write("Variance in Time: {}".format(TIME_var))
			file.write("Variance in Iterations: {}".format(ITR_var))
			file.write("Variance in Translation Error: {}".format(Trans_Err_var))
			file.write("Variance in Rotation Error: {}".format(Rot_Err_var))
Beispiel #2
0
def train():
    if not torch.cuda.is_available():
        args.device = 'cpu'
    args.device = torch.device(args.device)

    action = Action()
    model = action.create_model()
    model.to(args.device)
    model.cuda()

    min_loss = float('inf')
    learnable_params = filter(lambda p: p.requires_grad, model.parameters())
    if args.optimizer == 'adam': optimizer = torch.optim.Adam(learnable_params)
    else: optimizer = torch.optim.SGD(learnable_params, lr=0.1)

    templates = helper.loadData(args.data_dict)
    poses = helper.read_poses(args.data_dict, args.train_poses)
    eval_poses = helper.read_poses(args.data_dict, args.eval_poses)
    print(templates.shape, poses.shape, eval_poses.shape)

    for epoch in range(args.max_epoch):
        log_string("############## EPOCH: %0.4d ##############" % epoch)
        train_loss = action.train_one_epoch(model, poses, templates, optimizer)
        eval_loss = action.eval_one_epoch(model, eval_poses, templates)

        log_string("Training Loss: {} and Evaluation Loss: {}".format(
            train_loss, eval_loss))

        is_best = eval_loss < min_loss

        snap = {
            'epoch': epoch + 1,
            'model': model.state_dict(),
            'min_loss': min_loss,
            'optimizer': optimizer.state_dict()
        }

        if is_best:
            save_checkpoint(snap, os.path.join(LOG_DIR, 'model'), 'snap_best')
            save_checkpoint(model.state_dict(), os.path.join(LOG_DIR, 'model'),
                            'model_best')
            log_string("Best Evaluation Loss: {}".format(eval_loss))

        save_checkpoint(snap, os.path.join(LOG_DIR, 'model'), 'snap_last')
        save_checkpoint(model.state_dict(), os.path.join(LOG_DIR, 'model'),
                        'model_last')
def train():
	with tf.Graph().as_default():
		with tf.device('/cpu:0'):
			batch = tf.Variable(0)										# That tells the optimizer to helpfully increment the 'batch' parameter for you every time it trains.
			
		with tf.device('/gpu:'+str(GPU_INDEX)):
			is_training_pl = tf.placeholder(tf.bool, shape=())			# Flag for dropouts.
			bn_decay = get_bn_decay(batch)								# Calculate BN decay.
			learning_rate = get_learning_rate(batch)					# Calculate Learning Rate at each step.

			# Define a network to backpropagate the using final pose prediction.
			with tf.variable_scope('Network') as _:
				# Get the placeholders.
				source_pointclouds_pl, template_pointclouds_pl = MODEL.placeholder_inputs(BATCH_SIZE, NUM_POINT)
				# Extract Features.
				source_global_feature, template_global_feature = MODEL.get_model(source_pointclouds_pl, template_pointclouds_pl, is_training_pl, bn_decay=bn_decay,PN=POINTNET,POOL=FLAGS.pn_pool,out_features=out_features)
				# Find the predicted transformation.
				predicted_transformation = MODEL.get_pose(source_global_feature,template_global_feature,is_training_pl, bn_decay=bn_decay,lim_rot=FLAGS.lim_rot)
				# Find the loss using source and transformed template point cloud.
				# loss = MODEL.get_loss(predicted_transformation, BATCH_SIZE, template_pointclouds_pl, source_pointclouds_pl)
				loss = 0

		with tf.device('/cpu:0'):
			# Add ops to save and restore all the variables.
			saver = tf.train.Saver()

			
		# Create a session
		config = tf.ConfigProto()
		config.gpu_options.allow_growth = True
		config.allow_soft_placement = True
		config.log_device_placement = False
		sess = tf.Session(config=config)

		# Init variables
		init = tf.global_variables_initializer()
		sess.run(init, {is_training_pl: True})

		saver.restore(sess, FLAGS.model_path)

		# Create a dictionary to pass the tensors and placeholders in train and eval function for Network.
		ops = {'source_pointclouds_pl': source_pointclouds_pl,
			   'template_pointclouds_pl': template_pointclouds_pl,
			   'is_training_pl': is_training_pl,
			   'predicted_transformation': predicted_transformation,
			   'loss': loss,
			   'step': batch}

		templates = helper.loadData(FLAGS.data_dict)
		# pairs = helper.read_pairs(FLAGS.data_dict, FLAGS.pairs_file)
		eval_poses = helper.read_poses(FLAGS.data_dict, FLAGS.eval_poses)			# Read all the poses data for evaluation.
		eval_network(sess, ops, templates, eval_poses)
def train():
	with tf.Graph().as_default():
		with tf.device('/cpu:0'):
			batch = tf.Variable(0)										# That tells the optimizer to helpfully increment the 'batch' parameter for you every time it trains.
			
		with tf.device('/gpu:'+str(GPU_INDEX)):
			is_training_pl = tf.placeholder(tf.bool, shape=())			# Flag for dropouts.
			learning_rate = get_learning_rate(batch)					# Calculate Learning Rate at each step.

			# Define a network to backpropagate the using final pose prediction.
			with tf.variable_scope('Network') as _:
				# Get the placeholders.
				source_pointclouds_pl, template_pointclouds_pl, transformation_pl, gt_transformation_pl = MODEL.placeholder_inputs(BATCH_SIZE, NUM_VOXEL)
				# Extract Features.
				source_global_feature, template_global_feature = MODEL.get_model(source_pointclouds_pl, template_pointclouds_pl, is_training_pl, bn_decay=None)
				# Find the predicted transformation.
				predicted_transformation = MODEL.get_pose(source_global_feature,template_global_feature,is_training_pl, bn_decay=None)
				# Find the loss using source and transformed template point cloud.
				loss = MODEL.get_loss_v1(predicted_transformation, transformation_pl, gt_transformation_pl, BATCH_SIZE)
				# Add the loss in tensorboard.

			# Get training optimization algorithm.
			if OPTIMIZER == 'momentum':
				optimizer = tf.train.MomentumOptimizer(learning_rate, momentum=MOMENTUM)
			elif OPTIMIZER == 'adam':
				optimizer = tf.train.AdamOptimizer(learning_rate)

			train_op = optimizer.minimize(loss, global_step=batch)

		with tf.device('/cpu:0'):
			# Add ops to save and restore all the variables.
			saver = tf.train.Saver()
			tf.summary.scalar('loss', loss)
			tf.summary.scalar('learning_rate', learning_rate)

			
		# Create a session
		config = tf.ConfigProto()
		config.gpu_options.allow_growth = True
		config.allow_soft_placement = True
		config.log_device_placement = False
		sess = tf.Session(config=config)

		# Add summary writers
		merged = tf.summary.merge_all()
		if FLAGS.mode == 'train':			# Create summary writers only for train mode.
			train_writer = tf.summary.FileWriter(os.path.join(LOG_DIR, 'train'),
									  sess.graph)
			eval_writer = tf.summary.FileWriter(os.path.join(LOG_DIR, 'eval'))

		# Init variables
		init = tf.global_variables_initializer()
		sess.run(init, {is_training_pl: True})

		# Just to initialize weights with pretrained model.
		if FLAGS.use_pretrained_model:
			saver.restore(sess,os.path.join('log_512pts_1024feat_6itr_180deg_random_poses','model250.ckpt'))

		# Create a dictionary to pass the tensors and placeholders in train and eval function for Network.
		ops = {'source_pointclouds_pl': source_pointclouds_pl,
			   'template_pointclouds_pl': template_pointclouds_pl,
			   'transformation_pl': transformation_pl,
			   'gt_transformation_pl': gt_transformation_pl,
			   'is_training_pl': is_training_pl,
			   'predicted_transformation': predicted_transformation,
			   'loss': loss,
			   'train_op': train_op,
			   'merged': merged,
			   'step': batch}

		templates = helper.loadData(FLAGS.data_dict)
		poses = helper.read_poses(FLAGS.data_dict, TRAIN_POSES)				# Read all the poses data for training.
		eval_poses = helper.read_poses(FLAGS.data_dict, EVAL_POSES)			# Read all the poses data for evaluation.

		if FLAGS.mode == 'train':
			# For actual training.
			for epoch in range(MAX_EPOCH):
				log_string('**** EPOCH %03d ****' % (epoch))
				sys.stdout.flush()
				# Train for all triaining poses.
				train_one_epoch(sess, ops, train_writer, templates, poses)
				save_path = saver.save(sess, os.path.join(LOG_DIR, FLAGS.results+".ckpt"))
				if epoch % 10 == 0:
					# Evaluate the trained network after 50 epochs.
					eval_one_epoch(sess, ops, eval_writer, templates, eval_poses)
				# Save the variables to disk.
				if epoch % 50 == 0:
					# Store the Trained weights in log directory.
					save_path = saver.save(sess, os.path.join(LOG_DIR, "models", "model"+str(epoch)+".ckpt"))
					log_string("Model saved in file: %s" % save_path)
Beispiel #5
0
def run():
    NUM_POINT = FLAGS.num_point

    if not use_noise_data:
        templates = helper.loadData(FLAGS.data_dict)
        pairs = helper.read_pairs(FLAGS.data_dict, FLAGS.pairs_file)
    else:
        templates, sources = helper.read_noise_data(FLAGS.data_dict)
        # templates = helper.loadData(FLAGS.data_dict)
    eval_poses = helper.read_poses(
        FLAGS.data_dict,
        FLAGS.eval_poses)  # Read all the poses data for evaluation.
    eval_poses = eval_poses[0:1, :]
    num_batches = eval_poses.shape[0]

    TIME, ITR, Trans_Err, Rot_Err = [], [], [], []
    idxs_5_5, idxs_10_1, idxs_20_2 = [], [], []

    counter = 0
    for fn, gt_pose in enumerate(eval_poses):
        if fn > 0:
            break
        if not use_noise_data:
            # template_idx = pairs[fn,1]
            template_idx = 0
            M_given = templates[template_idx, :, :]
            S_given = helper.apply_transformation(M_given.reshape((1, -1, 3)),
                                                  gt_pose.reshape((1, 6)))[0]
        else:
            M_given = templates[fn, :, :]
            S_given = sources[fn, :, :]

        # M_given = np.loadtxt('template_car_itr.txt')
        # S_given = np.loadtxt('source_car_itr.txt')
        # helper.display_clouds_data(M_given)
        # helper.display_clouds_data(S_given)

        # To generate point cloud for Xueqian: For CAD model figures
        # gt_pose = np.array([[0.5,0.2,0.4,40*(np.pi/180),20*(np.pi/180),30*(np.pi/180)]])
        # templates = helper.loadData('unseen_data')
        # gt_pose = np.array([[-0.3,-0.7,0.4,-34*(np.pi/180),31*(np.pi/180),-27*(np.pi/180)]])
        # gt_pose = np.array([[0.5929,-0.0643,-0.961,0.4638,-0.3767,-0.6253]])
        # M_given = templates[48,:,:]
        # S_given = helper.apply_transformation(M_given.reshape(1,-1,3),gt_pose)
        # S_given = helper.add_noise(S_given)
        # S_given = S_given[0]

        M_given = M_given[0:NUM_POINT, :]  # template data
        S_given = S_given[0:NUM_POINT, :]  # source data

        tree_M = KDTree(M_given)
        tree_M_sampled = KDTree(M_given[0:100, :])

        final_pose, model_data, sensor_data, predicted_data, _, time_elapsed, itr = icp.icp_test(
            S_given[0:100, :], M_given,
            tree_M, M_given[0:100, :], tree_M_sampled, S_given,
            gt_pose.reshape((1, 6)), 100, FLAGS.threshold)
        translation_error, rotational_error = find_errors(
            gt_pose[0], final_pose[0])
        print(translation_error, rotational_error)

        TIME.append(time_elapsed)
        ITR.append(itr)
        Trans_Err.append(translation_error)
        Rot_Err.append(rotational_error)

        if rotational_error < 20 and translation_error < 0.2:
            if rotational_error < 10 and translation_error < 0.1:
                if rotational_error < 5 and translation_error < 0.05:
                    idxs_5_5.append(fn)
                idxs_10_1.append(fn)
            idxs_20_2.append(fn)

        print('Batch: {}, Iterations: {}, Time: {}'.format(
            counter, itr, time_elapsed))
        # counter += 1

        # helper.display_three_clouds(M_given, S_given, predicted_data, "")
        # np.savetxt('template_piano.txt',M_given)
        # np.savetxt('source_piano.txt',S_given)
        # np.savetxt('predicted_piano.txt',predicted_data)

    log = {
        'TIME': TIME,
        'ITR': ITR,
        'Trans_Err': Trans_Err,
        'Rot_Err': Rot_Err,
        'idxs_5_5': idxs_5_5,
        'idxs_10_1': idxs_10_1,
        'idxs_20_2': idxs_20_2,
        'num_batches': num_batches
    }

    helper.log_test_results(FLAGS.log_dir, FLAGS.filename, log)
def train():
    graph = tf.Graph()
    with graph.as_default():
        with tf.device('/cpu:0'):
            batch = tf.Variable(
                0
            )  # That tells the optimizer to helpfully increment the 'batch' parameter for you every time it trains.

        with tf.device('/gpu:' + str(GPU_INDEX)):
            is_training_pl = tf.placeholder(tf.bool,
                                            shape=())  # Flag for dropouts.
            learning_rate = get_learning_rate(
                batch)  # Calculate Learning Rate at each step.

            # Define a network to backpropagate the using final pose prediction.
            with tf.variable_scope('Network') as _:
                # Get the placeholders.
                source_pointclouds_pl, template_pointclouds_pl = MODEL.placeholder_inputs(
                    BATCH_SIZE, NUM_POINT)
                # Extract Features.
                source_global_feature, template_global_feature = MODEL.get_model(
                    source_pointclouds_pl,
                    template_pointclouds_pl,
                    is_training_pl,
                    bn_decay=None,
                    PN=POINTNET,
                    POOL=FLAGS.pn_pool,
                    out_features=out_features)
                # Find the predicted transformation.
                predicted_transformation = MODEL.get_pose(
                    source_global_feature,
                    template_global_feature,
                    is_training_pl,
                    bn_decay=None,
                    lim_rot=FLAGS.lim_rot)
                # Find the loss using source and transformed template point cloud.
                # loss = MODEL.get_loss(predicted_transformation, BATCH_SIZE, template_pointclouds_pl, source_pointclouds_pl)
                # Add the loss in tensorboard.
            # loss - ours:
            batch_size = BATCH_SIZE
            predicted_position = tf.slice(predicted_transformation, [0, 0],
                                          [batch_size, 3])
            predicted_quat = tf.slice(predicted_transformation, [0, 3],
                                      [batch_size, 4])
            norm_predicted_quat = tf.reduce_sum(tf.square(predicted_quat), 1)
            norm_predicted_quat = tf.sqrt(norm_predicted_quat)
            norm_predicted_quat = tf.reshape(norm_predicted_quat,
                                             (batch_size, 1))
            const = tf.constant(0.0000001,
                                shape=(batch_size, 1),
                                dtype=tf.float32)
            norm_predicted_quat = tf.add(norm_predicted_quat, const)
            predicted_norm_quat = tf.divide(predicted_quat,
                                            norm_predicted_quat)

            transformed_predicted_point_cloud = helper.transformation_quat_tensor(
                source_pointclouds_pl, predicted_norm_quat, predicted_position)

            is_training_pl_1 = tf.placeholder(tf.bool,
                                              shape=())  # flag for batch norm

            # load our model as loss function:
            saver31 = tf.train.import_meta_graph(
                os.path.join(LOG_DIR, 'model.ckpt.meta'),
                import_scope='g1',
                input_map={
                    'input1': transformed_predicted_point_cloud,
                    'input2': template_pointclouds_pl,
                    'Placeholder': is_training_pl_1
                },
                clear_devices=True)
            labels12 = graph.get_tensor_by_name('g1/labels12:0')
            if ADD_NOISE_MODEL:
                add_noise = graph.get_tensor_by_name('g1/add_noise:0')
            # set optimizer:
            if OPTIMIZER == 'momentum':
                optimizer3 = tf.train.MomentumOptimizer(learning_rate,
                                                        momentum=MOMENTUM)
            elif OPTIMIZER == 'adam':
                optimizer3 = tf.train.AdamOptimizer(learning_rate,
                                                    name='Adam2')
            # optimizer only on g2 variables.

            # get loss:
            # pred_AB3 = (graph.get_tensor_by_name('g1/pc_compare/output1:0') + 1) / 2.0
            # pred_BA3 = (graph.get_tensor_by_name('g1/pc_compare/output2:0') + 1) / 2.0
            pred_AB3 = (graph.get_tensor_by_name('g1/pc_compare/output1:0'))
            pred_BA3 = (graph.get_tensor_by_name('g1/pc_compare/output2:0'))
            loss = (tf.reduce_mean(pred_AB3[:, :, :, 0]) +
                    tf.reduce_mean(pred_BA3[:, :, :, 0])) / 2.0

            loss_c = chmafer_dist(transformed_predicted_point_cloud,
                                  template_pointclouds_pl)

            train_vars = tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES,
                                           scope='Network')
            grads = optimizer3.compute_gradients(loss, train_vars)
            train_op = optimizer3.apply_gradients(grads, global_step=batch)

            # train_op = optimizer.minimize(loss, global_step=batch)

        with tf.device('/cpu:0'):
            # Add ops to save and restore all the variables.
            saver = tf.train.Saver()
            sum_lr = tf.summary.scalar('learning_rate', learning_rate)
            sum_loss = tf.summary.scalar('loss', loss)
            chamfer_loss = tf.summary.scalar('loss_chamfer', loss_c)

        # Create a session
        config = tf.ConfigProto()
        config.gpu_options.allow_growth = True
        config.allow_soft_placement = True
        config.log_device_placement = False
        sess = tf.Session(config=config)

        # Add summary writers
        # merged = tf.summary.merge_all()
        merged = tf.summary.merge([sum_loss, sum_lr, chamfer_loss])

        if FLAGS.mode == 'train':  # Create summary writers only for train mode.
            train_writer = tf.summary.FileWriter(
                os.path.join(LOG_DIR, 'train'), sess.graph)
            eval_writer = tf.summary.FileWriter(os.path.join(LOG_DIR, 'eval'))

        # Init variables
        init = tf.global_variables_initializer()
        # sess.run(init, {is_training_pl: True})
        MODEL_PATH1 = os.path.join(LOG_DIR, 'model.ckpt')
        saver31.restore(sess, MODEL_PATH1)
        initialize_uninitialized_vars(sess)
        print('models restored')
        # Just to initialize weights with pretrained model.
        if FLAGS.use_pretrained_model:
            saver.restore(
                sess,
                os.path.join('log_512pts_1024feat_6itr_180deg_random_poses',
                             'model250.ckpt'))
        if ADD_NOISE_MODEL:
            # Create a dictionary to pass the tensors and placeholders in train and eval function for Network.
            ops = {
                'source_pointclouds_pl': source_pointclouds_pl,
                'template_pointclouds_pl': template_pointclouds_pl,
                'is_training_pl': is_training_pl,
                'predicted_transformation': predicted_transformation,
                'loss': loss,
                'train_op': train_op,
                'merged': merged,
                'step': batch,
                'labels12': labels12,
                'is_training_pl_1': is_training_pl_1,
                'add_noise': add_noise
            }
        else:
            # Create a dictionary to pass the tensors and placeholders in train and eval function for Network.
            ops = {
                'source_pointclouds_pl': source_pointclouds_pl,
                'template_pointclouds_pl': template_pointclouds_pl,
                'is_training_pl': is_training_pl,
                'predicted_transformation': predicted_transformation,
                'loss': loss,
                'train_op': train_op,
                'merged': merged,
                'step': batch,
                'labels12': labels12,
                'is_training_pl_1': is_training_pl_1
            }

        templates = helper.loadData(FLAGS.data_dict)
        poses = helper.read_poses(
            FLAGS.data_dict,
            TRAIN_POSES)  # Read all the poses data for training.
        eval_poses = helper.read_poses(
            FLAGS.data_dict,
            EVAL_POSES)  # Read all the poses data for evaluation.

        if FLAGS.mode == 'train':
            print_('Training Started!', color='r', style='bold')
            # For actual training.
            for epoch in range(MAX_EPOCH):
                log_string('**** EPOCH %03d ****' % (epoch))
                sys.stdout.flush()
                # Train for all triaining poses.
                train_one_epoch(sess, ops, train_writer, templates, poses)
                save_path = saver.save(
                    sess, os.path.join(LOG_DIR, FLAGS.results + ".ckpt"))
                if epoch % 10 == 0:
                    # Evaluate the trained network after 50 epochs.
                    eval_one_epoch(sess, ops, eval_writer, templates,
                                   eval_poses)
                # Save the variables to disk.
                if epoch % 50 == 0:
                    # Store the Trained weights in log directory.
                    save_path = saver.save(
                        sess,
                        os.path.join(LOG_DIR, "models",
                                     "model" + str(epoch) + ".ckpt"))
                    log_string("Model saved in file: %s" % save_path)
            print_('Training Successful!!', color='r', style='bold')
def train():
    with tf.Graph().as_default():
        with tf.device('/cpu:0'):
            batch = tf.Variable(
                0
            )  # That tells the optimizer to helpfully increment the 'batch' parameter for you every time it trains.

        with tf.device('/gpu:' + str(GPU_INDEX)):
            is_training_pl = tf.placeholder(tf.bool,
                                            shape=())  # Flag for dropouts.
            learning_rate = get_learning_rate(
                batch)  # Calculate Learning Rate at each step.

            # Define a network to backpropagate the using final pose prediction.
            with tf.variable_scope('Network_L') as _:
                # Object of network class.
                network_L = MODEL.Network()
                # Get the placeholders.
                source_pointclouds_pl_L, template_pointclouds_pl_L = network_L.placeholder_inputs(
                    BATCH_SIZE, NUM_POINT)
                # Extract Features.
                source_global_feature_L, template_global_feature_L = network_L.get_model(
                    source_pointclouds_pl_L,
                    template_pointclouds_pl_L,
                    FLAGS.feature_size,
                    is_training_pl,
                    bn_decay=None)
                # Find the predicted transformation.
                predicted_transformation_L = network_L.get_pose(
                    source_global_feature_L,
                    template_global_feature_L,
                    is_training_pl,
                    bn_decay=None)
            loss = 0

        with tf.device('/cpu:0'):
            # Add ops to save and restore all the variables.
            saver = tf.train.Saver()

        # Create a session
        config = tf.ConfigProto()
        config.gpu_options.allow_growth = True
        config.allow_soft_placement = True
        config.log_device_placement = False
        sess = tf.Session(config=config)

        # Init variables
        init = tf.global_variables_initializer()
        sess.run(init, {is_training_pl: True})

        # Just to initialize weights with pretrained model.
        saver.restore(sess, FLAGS.model_path)

        # Create a dictionary to pass the tensors and placeholders in train and eval function for Network_L.
        ops_L = {
            'source_pointclouds_pl': source_pointclouds_pl_L,
            'template_pointclouds_pl': template_pointclouds_pl_L,
            'is_training_pl': is_training_pl,
            'predicted_transformation': predicted_transformation_L,
            'loss': loss,
            'step': batch
        }

        #templates = helper.process_templates(FLAGS.data_dict)							# Read all the templates.
        templates = helper.loadData(FLAGS.data_dict)
        eval_poses = helper.read_poses(
            FLAGS.data_dict,
            FLAGS.eval_poses)  # Read all the poses data for evaluation.
        eval_poses = eval_poses[0:10, :]
        eval_network(sess, ops_L, templates, eval_poses)