Beispiel #1
0
def run():

    num_classes = 2

    image_h, image_w = (160, 576)

    with tf.Session() as sess:

        # Path to vgg model
        vgg_path = join(data_dir, 'vgg')

        # Create function to get batches
        batch_generator = gen_batch_function(join(data_dir, 'data_road/training'), (image_h, image_w))

        # Load VGG pretrained
        image_input, keep_prob, vgg_layer3_out, vgg_layer4_out, vgg_layer7_out = load_vgg(sess, vgg_path)

        # Add skip connections
        output = layers(vgg_layer3_out, vgg_layer4_out, vgg_layer7_out, num_classes)

        # Define placeholders
        labels = tf.placeholder(tf.float32, shape=[None, image_h, image_w, num_classes])
        learning_rate = tf.placeholder(tf.float32, shape=[])

        logits, train_op, cross_entropy_loss = optimize(output, labels, learning_rate, num_classes)

        # Training parameters
        train_nn(sess, args.training_epochs, args.batch_size, batch_generator, train_op, cross_entropy_loss,
                 image_input, labels, keep_prob, learning_rate)

        save_inference_samples(runs_dir, data_dir, sess, (image_h, image_w), logits, keep_prob, image_input)
def run():
    num_classes = 2
    image_shape = (160, 576)
    data_dir = './data'
    runs_dir = './runs'
    tests.test_for_kitti_dataset(data_dir)

    # Download pretrained vgg model
    helper.maybe_download_pretrained_vgg(data_dir)

    with tf.Session() as sess:
        # Path to vgg model
        vgg_path = os.path.join(data_dir, 'vgg')
        # Create function to get batches
        get_batches_fn = helper.gen_batch_function(os.path.join(data_dir, 'data_road/training'), image_shape)

        epochs = 50
        batch_size = 5

        # TF placeholders
        correct_label = tf.placeholder(tf.int32, [None, None, None, num_classes], name='correct_label')
        learning_rate = tf.placeholder(tf.float32, name='learning_rate')

        input_image, keep_prob, vgg_layer3_out, vgg_layer4_out, vgg_layer7_out = load_vgg(sess, vgg_path)

        nn_last_layer = layers(vgg_layer3_out, vgg_layer4_out, vgg_layer7_out, num_classes)

        logits, train_op, cross_entropy_loss = optimize(nn_last_layer, correct_label, learning_rate, num_classes)

        train_nn(sess, epochs, batch_size, get_batches_fn, train_op, cross_entropy_loss, input_image,
             correct_label, keep_prob, learning_rate)

        helper.save_inference_samples(runs_dir, data_dir, sess, image_shape, logits, keep_prob, input_image)
def run():
    print("Run")
    num_classes = 2
    image_shape = (160, 576)
    data_dir = './data'
    runs_dir = './runs'

    tests.test_for_kitti_dataset(data_dir)

    # Download pretrained vgg model
    helper.maybe_download_pretrained_vgg(data_dir)

    # OPTIONAL: Train and Inference on the cityscapes dataset instead of the Kitti dataset.
    # You'll need a GPU with at least 10 teraFLOPS to train on.
    #  https://www.cityscapes-dataset.com/
    # Note: Not done
    
    kBatchSize = 5
    kEpochs = 10

    with tf.Session() as sess:
        # Path to vgg model
        vgg_path = os.path.join(data_dir, 'vgg')
        # Create function to get batches
        get_batches_fn = helper.gen_batch_function(os.path.join(data_dir, 'data_road/training'), image_shape)

        # OPTIONAL: Augment Images for better results
        #  https://datascience.stackexchange.com/questions/5224/how-to-prepare-augment-images-for-neural-network
        # Note: Not implemented.

        correct_label = tf.placeholder(tf.int32, [None, None, None, num_classes], name='correct_label')
        learning_rate = tf.placeholder(tf.float32, name='learning_rate')

        # Build NN using load_vgg, layers, and optimize function
        input_image, keep_prob, layer3_out, layer4_out, layer7_out = load_vgg(sess, vgg_path)
        layer_output = layers(layer3_out, layer4_out, layer7_out, num_classes)
        logits, train_op, cross_entropy_loss = optimize(layer_output, correct_label, learning_rate, num_classes)
        
        # Train NN using the train_nn function
        train_nn(sess, kEpochs, kBatchSize, get_batches_fn, train_op, cross_entropy_loss, input_image, correct_label, keep_prob, learning_rate)

        # Save inference data using helper.save_inference_samples
        helper.save_inference_samples(runs_dir, data_dir, sess, image_shape, logits, keep_prob, input_image)
        
        # Save the variables to disk.
        print("Saving model...")
        saver = tf.train.Saver()
        save_path = saver.save(sess, "./model/semantic_segmentation_model.ckpt")
        print("Model saved in path: %s" % save_path)
def run():
    num_classes = 2
    image_shape = (160, 576)
    data_dir = './data'
    runs_dir = './runs'
    tests.test_for_kitti_dataset(data_dir)

    # Download pretrained vgg model
    helper.maybe_download_pretrained_vgg(data_dir)

    # OPTIONAL: Train and Inference on the cityscapes dataset instead of the Kitti dataset.
    # You'll need a GPU with at least 10 teraFLOPS to train on.
    #  https://www.cityscapes-dataset.com/

    with tf.Session() as sess:
        # Path to vgg model
        vgg_path = os.path.join(data_dir, 'vgg')
        # Create function to get batches
        get_batches_fn = helper.gen_batch_function(os.path.join(data_dir, 'data_road/training'), image_shape)

        # OPTIONAL: Augment Images for better results
        #  https://datascience.stackexchange.com/questions/5224/how-to-prepare-augment-images-for-neural-network

        # Build NN using load_vgg, layers, and optimize function
        epochs        = 50
        batch_size    = 8

        correct_label = tf.placeholder(tf.int32, (None, None, None, num_classes))
        learning_rate = tf.placeholder(tf.float32)

        input_image, keep_prob, layer3_out, layer4_out, layer7_out = load_vgg(sess, vgg_path)
        layer_output = layers(layer3_out, layer4_out, layer7_out, num_classes)
        logits, train_op, cross_entropy_loss = optimize(layer_output, correct_label, learning_rate, num_classes)

        # Train NN using the train_nn function
        train_nn(sess,
                 epochs,
                 batch_size,
                 get_batches_fn,
                 train_op,
                 cross_entropy_loss,
                 input_image,
                 correct_label,
                 keep_prob,
                 learning_rate)

        # Save inference data using helper.save_inference_samples
        helper.save_inference_samples(runs_dir, data_dir, sess, image_shape, logits, keep_prob, input_image)
def run():
    num_classes = 2
    image_shape = (160, 576)
    data_dir = './data'
    runs_dir = './runs'
    tests.test_for_kitti_dataset(data_dir)

    # Download pretrained vgg model
    helper.maybe_download_pretrained_vgg(data_dir)

    # OPTIONAL: Train and Inference on the cityscapes dataset instead of the Kitti dataset.
    # You'll need a GPU with at least 10 teraFLOPS to train on.
    #  https://www.cityscapes-dataset.com/

    with tf.Session() as sess:
        # Path to vgg model
        vgg_path = os.path.join(data_dir, 'vgg')
        # Create function to get batches
        get_batches_fn = helper.gen_batch_function(os.path.join(data_dir, 'data_road/training'), image_shape)

        # OPTIONAL: Augment Images for better results
        #  https://datascience.stackexchange.com/questions/5224/how-to-prepare-augment-images-for-neural-network

        epochs = 30
        batch_size = 16
        
        correct_label = tf.placeholder(tf.int32, [None, None, None, num_classes], name='correct_label')
        learning_rate = tf.placeholder(tf.float32, name='learning_rate')

        input_image, keep_prob, layer3_out, layer4_out, layer7_out = load_vgg(sess, vgg_path)
        nn_last_layer = layers(layer3_out, layer4_out, layer7_out, num_classes)
        logits, train_op, cross_entropy_loss = optimize(nn_last_layer, correct_label, learning_rate, num_classes)

        train_nn(sess, epochs, batch_size, get_batches_fn, train_op, cross_entropy_loss, input_image,
             correct_label, keep_prob, learning_rate)

        helper.save_inference_samples(runs_dir, data_dir, sess, image_shape, logits, keep_prob, input_image)
def run():
    num_classes = 2
    image_shape = (160, 576)
    data_dir = './data'
    runs_dir = './runs'
    tests.test_for_kitti_dataset(data_dir)

    # Download pretrained vgg model
    helper.maybe_download_pretrained_vgg(data_dir)

    # OPTIONAL: Train and Inference on the cityscapes dataset instead of the Kitti dataset.
    # You'll need a GPU with at least 10 teraFLOPS to train on.
    #  https://www.cityscapes-dataset.com/

    with tf.Session() as sess:
        # Path to vgg model
        vgg_path = os.path.join(data_dir, 'vgg')
        # Create function to get batches
        get_batches_fn = helper.gen_batch_function(os.path.join(data_dir, 'data_road/training'), image_shape)

        # OPTIONAL: Augment Images for better results
        #  https://datascience.stackexchange.com/questions/5224/how-to-prepare-augment-images-for-neural-network
        learning_rate = tf.placeholder(tf.float32, name="learning_rate")
        correct_label = tf.placeholder(tf.float32, [None, image_shape[0], image_shape[1], num_classes],
                                       name="correct_label")
        epochs = 15
        batch_size = 5

        # TODO: Build NN using load_vgg, layers, and optimize function
        input_weight, keep_prob, layer_3, layer_4, layer_7=load_vgg(sess,vgg_path)
        output_layer=layers(layer_3,layer_4,layer_7,num_classes)
        logits, train_op, cross_entropy_loss = optimize(output_layer, correct_label, learning_rate, num_classes)
        #  Train NN using the train_nn function
        train_nn(sess, epochs, batch_size, get_batches_fn, train_op, cross_entropy_loss, input_weight, correct_label,
                 keep_prob, learning_rate)
        #  Save inference data using helper.save_inference_samples
        helper.save_inference_samples(runs_dir, data_dir, sess, image_shape, logits, keep_prob, input_weight)
def run():
  
  # Download pretrained vgg model
  #helper.maybe_download_pretrained_vgg(data_dir)

  # A function to get batches
  get_batches_fn = helper.gen_batch_function(training_dir, IMAGE_SHAPE)
  
  with tf.Session() as session:
        
    # Returns the three layers, keep probability and input layer from the vgg architecture
    image_input, keep_prob, layer3, layer4, layer7 = load_vgg(session, vgg_path)

    # The resulting network architecture from adding a decoder on top of the given vgg model
    model_output = layers(layer3, layer4, layer7, NUMBER_OF_CLASSES)

    # Returns the output logits, training operation and cost operation to be used
    # - logits: each row represents a pixel, each column a class
    # - train_op: function used to get the right parameters to the model to correctly label the pixels
    # - cross_entropy_loss: function outputting the cost which we are minimizing, lower cost should yield higher accuracy
    logits, train_op, cross_entropy_loss = optimize(model_output, correct_label, learning_rate, NUMBER_OF_CLASSES)
    
    # Initialize all variables
    session.run(tf.global_variables_initializer())
    session.run(tf.local_variables_initializer())

    print("Model build successful KK, starting training")

    # Train the neural network
    train_nn(session, EPOCHS, BATCH_SIZE, get_batches_fn, 
             train_op, cross_entropy_loss, image_input,
             correct_label, keep_prob, learning_rate)

    # Run the model with the test images and save each painted output image (roads painted green)
    helper.save_inference_samples(runs_dir, data_dir, session, IMAGE_SHAPE, logits, keep_prob, image_input)
    
    print("All done!")
Beispiel #8
0
def run():
    num_classes = 2
    image_shape = (160, 576)
    data_dir = './data'
    runs_dir = './runs'
    tests.test_for_kitti_dataset(data_dir)

    # Download pretrained vgg model
    helper.maybe_download_pretrained_vgg(data_dir)

    with tf.Session() as sess:
        # Path to vgg model
        vgg_path = os.path.join(data_dir, 'vgg')
        # Create function to get batches
        get_batches_fn = helper.gen_batch_function(os.path.join(data_dir, 'data_road/training'), image_shape)

        # Build NN using load_vgg, layers, and optimize function
        epochs = 50
        batch_size = 5

        # TF placeholders
        correct_label = tf.placeholder(tf.int32, [None, None, None, num_classes], name='correct_label')
        learning_rate = tf.placeholder(tf.float32, name='learning_rate')

        input_image, keep_prob, vgg_layer3_out, vgg_layer4_out, vgg_layer7_out = load_vgg(sess, vgg_path)

        nn_last_layer = layers(vgg_layer3_out, vgg_layer4_out, vgg_layer7_out, num_classes)

        logits, train_op, cross_entropy_loss = optimize(nn_last_layer, correct_label, learning_rate, num_classes)

        # Train NN using the train_nn function
        train_nn(sess, epochs, batch_size, get_batches_fn, train_op, cross_entropy_loss, input_image,
                 correct_label, keep_prob, learning_rate)

        # Save inference data using helper.save_inference_samples
        #  helper.save_inference_samples(runs_dir, data_dir, sess, image_shape, logits, keep_prob, input_image)
        helper.save_inference_samples(runs_dir, data_dir, sess, image_shape, logits, keep_prob, input_image)
Beispiel #9
0
def run():
    num_classes = 2
    image_shape = (160, 576)  # KITTI dataset uses 160x576 images
    data_dir = 'data'
    runs_dir = 'runs'
    tests.test_for_kitti_dataset(data_dir)
           
    # Download pretrained vgg model
    helper.maybe_download_pretrained_vgg(data_dir)

    # OPTIONAL: Train and Inference on the cityscapes dataset instead of the Kitti dataset.
    # You'll need a GPU with at least 10 teraFLOPS to train on.
    #  https://www.cityscapes-dataset.com/

    with tf.Session() as sess:
        # Path to vgg model
        vgg_path = os.path.join(data_dir, 'vgg')
        # Create function to get batches
        get_batches_fn = helper.gen_batch_function(os.path.join(data_dir, 'data_road/training'), image_shape)

        # OPTIONAL: Augment Images for better results
        #  https://datascience.stackexchange.com/questions/5224/how-to-prepare-augment-images-for-neural-network

        # Build NN using load_vgg, layers, and optimize function
        image_input, keep_prob, layer3_out, layer4_out, layer7_out = load_vgg(sess, vgg_path)
        output_layer = layers(layer3_out, layer4_out, layer7_out, 2)

        correct_label = tf.placeholder(dtype=tf.float32, shape=(None, None, None, 2), name='correct_label')
        learning_rate = tf.placeholder(dtype=tf.float32, name='learning_rate')

        logits, train_opp, cross_entropy_loss = optimize(output_layer, correct_label, learning_rate, 2)  
        sess.run(tf.global_variables_initializer())  

        # Train NN using the train_nn function
        train_nn(sess, 8, 8, get_batches_fn, train_opp, cross_entropy_loss, image_input, correct_label, keep_prob, learning_rate)
        # Save inference data using helper.save_inference_samples
        helper.save_inference_samples(runs_dir, data_dir, sess, image_shape, logits, keep_prob, image_input)
Beispiel #10
0
def run():
    num_classes = 2
    image_shape = (160, 576)
    data_dir = './data'
    runs_dir = './runs'

    tests.test_for_kitti_dataset(data_dir)
    helper.maybe_download_pretrained_vgg(data_dir)

    # OPTIONAL: Train and Inference on the cityscapes dataset instead of the Kitti dataset.
    # Needs a GPU with at least 10 teraFLOPS to train on.
    # https://www.cityscapes-dataset.com/

    with tf.Session() as sess:
        vgg_path = os.path.join(data_dir, 'vgg')
        get_batches_fn = helper.gen_batch_function(
            os.path.join(data_dir, 'data_road/training'), image_shape)

        epochs = 50
        batch_size = 5

        correct_label = tf.placeholder(tf.int32,
                                       [None, None, None, num_classes])
        learning_rate = tf.placeholder(tf.float32)

        input_image, keep_prob, layer3, layer4, layer7 = load_vgg(
            sess, vgg_path)
        output = layers(layer3, layer4, layer7, num_classes)
        logits, train_op, cross_entropy_loss = optimize(
            output, correct_label, learning_rate, num_classes)

        train_nn(sess, epochs, batch_size, get_batches_fn, train_op,
                 cross_entropy_loss, input_image, correct_label, keep_prob,
                 learning_rate)

        helper.save_inference_samples(runs_dir, data_dir, sess, image_shape,
                                      logits, keep_prob, input_image)
Beispiel #11
0
def run():
    proportion_train = 0.75 # rest validation. Don't have big enough set for separate test set really!
    img_type = "both"   # "sim", "real" or "both"
    save_model_name = "both_full_frame_model.ckpt" # if saving this time

    load_trained_weights = False   # False to train, True to run in inference mode
    
    if load_trained_weights:
        # Want to apply model in inference mode to all images
        proportion_train = 0.0

    runs_dir = "../ros/src/tl_detector/runs"

    # Walkthrough: maybe ~6 epochs to start with. Batches not too big because large amount of information.
    epochs = 10 # Now reduced for debug   8 # Seemed to get worse last time after too many
    batch_size = 1 # Already getting memory warnings!
    # Other hyperparameters in train_nn(); would have put them here but went with template calling structure


    # Split images into training and validation sets
    training_image_paths, validation_image_paths =  \
                helper.get_split_image_paths(proportion_train, img_type, '../data/training_images')

    with tf.Session() as sess:

        # Construct model; done by separate class so that it can be invoked
        # by ROS runtime in exactly the same way
        cnn_model = cnn_classifier_model.CnnClassifierModel(sess, load_trained_weights)
        
        # Create function to get batches
        get_batches_fn = helper.gen_batch_function(training_image_paths, cnn_model.image_shape, cnn_model.num_classes)

        if not load_trained_weights:
            print("Training model...")
            train_nn(sess, epochs, batch_size, get_batches_fn, cnn_model)
        else:
            # Using trained weights so no training to do
            pass

        # DONE: Save inference data using helper.save_inference_samples
        run_output_dir = helper.save_inference_samples(runs_dir, validation_image_paths, sess, 
                   cnn_model.image_shape, cnn_model.keep_prob, cnn_model.logits, cnn_model.image_input)

        # Save model for reuse in inference mode, if we trained it this time
        if not load_trained_weights:
            save_path = cnn_model.saver.save(sess, os.path.join(run_output_dir, save_model_name))
            print("Saved TensorFlow model in %s\n" % save_path)
        else:
            print("Didn't save model because we loaded the weights from disk this time")
def run():
    num_classes = 2
    image_shape = (160, 576)
    data_dir = './data'
    runs_dir = './runs'
    tests.test_for_kitti_dataset(data_dir)
    epochs = 15
    batch_size = 8

    # Download pretrained vgg model
    helper.maybe_download_pretrained_vgg(data_dir)

    # OPTIONAL: Train and Inference on the cityscapes dataset instead of the Kitti dataset.
    # You'll need a GPU with at least 10 teraFLOPS to train on.
    #  https://www.cityscapes-dataset.com/

    with tf.Session() as sess:
        # Path to vgg model
        vgg_path = os.path.join(data_dir, 'vgg')
        # Create function to get batches
        get_batches_fn = helper.gen_batch_function(os.path.join(data_dir, 'data_road/training'), image_shape)

        # TODO: Build NN using load_vgg, layers, and optimize function
        input_image, keep_prob, layer_3_out, layer_4_out, layer_7_out = load_vgg(sess, vgg_path)
        output = layers(layer_3_out, layer_4_out, layer_7_out, num_classes)

        correct_label = tf.placeholder(tf.float32, shape = [None, None, None, num_classes])
        learning_rate = tf.placeholder(tf.float32)

        logits, train_op, cross_entropy_loss = optimize(output, correct_label, learning_rate, num_classes)
        sess.run(tf.global_variables_initializer())
        train_nn(sess, epochs, batch_size, get_batches_fn, train_op, cross_entropy_loss, input_image,
             correct_label, keep_prob, learning_rate)

        # TODO: Save inference data using helper.save_inference_samples
        helper.save_inference_samples(runs_dir, data_dir, sess, image_shape, logits, keep_prob, input_image)
Beispiel #13
0
def cont():
    with tf.Session() as sess:
        # Path to vgg model
        vgg_path = os.path.join(data_dir, 'vgg')
        # Create function to get batches
        get_batches_fn = helper.gen_batch_function(
            os.path.join(data_dir, 'data_road/training'), IMAGE_SHAPE)
        input, keep_prob, layer3, layer4, layer7 = load_vgg(sess, vgg_path)
        output = layers(layer3, layer4, layer7, num_classes)
        correct_label = tf.placeholder(dtype=tf.float32,
                                       shape=(None, None, None, num_classes))
        learning_rate = tf.placeholder(dtype=tf.float32)
        logits, train_op, cross_entropy_loss = optimize(
            output, correct_label, learning_rate, num_classes)
        sess.run(tf.global_variables_initializer())
        new_saver = tf.train.import_meta_graph(
            './models_3col/epoch_199.ckpt.meta')
        new_saver.restore(sess, tf.train.latest_checkpoint('./models_3col/'))
        saver = tf.train.Saver()  #Simple model saver
        train_nn(sess, 10, BATCH_SIZE, get_batches_fn, train_op,
                 cross_entropy_loss, input, correct_label, keep_prob,
                 learning_rate, saver, MODEL_DIR)
        helper.save_inference_samples(runs_dir, data_dir, sess, IMAGE_SHAPE,
                                      logits, keep_prob, input, num_classes)
def run():
    num_classes = 2
    image_shape = (160, 576)  # KITTI dataset uses 160x576 images
    data_dir = './data'
    runs_dir = './runs'
    tests.test_for_kitti_dataset(data_dir)

    # Download pretrained vgg model
    helper.maybe_download_pretrained_vgg(data_dir)

    # OPTIONAL: Train and Inference on the cityscapes dataset instead of the Kitti dataset.
    # You'll need a GPU with at least 10 teraFLOPS to train on.
    #  https://www.cityscapes-dataset.com/

    with tf.Session() as sess:
        # Path to vgg model
        vgg_path = os.path.join(data_dir, 'vgg')
        # Create function to get batches
        get_batches_fn = helper.gen_batch_function(os.path.join(data_dir, 'data_road/training'), image_shape)

        # OPTIONAL: Augment Images for better results
        #  https://datascience.stackexchange.com/questions/5224/how-to-prepare-augment-images-for-neural-network

        # TODO: Build NN using load_vgg, layers, and optimize function
        image_input, keep_prob, vgg_layer3_out, vgg_layer4_out, vgg_layer7_out = load_vgg(sess, vgg_path)
        model = layers(vgg_layer3_out, vgg_layer4_out, vgg_layer7_out, num_classes)
        labels = tf.placeholder(tf.float32, shape=[None, image_shape[0], image_shape[1], num_classes])
        learning_rate = tf.placeholder(tf.float32, shape=[])
        logits, training_operation, cross_entropy_loss = optimize(model, labels, learning_rate, num_classes)

        # TODO: Train NN using the train_nn function
        train_nn(sess, 100, 32, get_batches_fn, training_operation, cross_entropy_loss, image_input, labels, keep_prob, learning_rate)
        
        # TODO: Save inference data using helper.save_inference_samples
        #  helper.save_inference_samples(runs_dir, data_dir, sess, image_shape, logits, keep_prob, input_image)
        helper.save_inference_samples(runs_dir, data_dir, sess, image_shape, logits, keep_prob, image_input)
Beispiel #15
0
    def run(self):

        helper.check_compatibility()
        tests.test_for_kitti_dataset(self.data_dir)
        helper.maybe_download_pretrained_vgg(self.data_dir)

        # Define the batching function
        get_batches_fn = helper.gen_batch_function(self.training_path,
                                                   self.image_shape)

        # TensorFlow session
        with tf.Session() as sess:

            # Placeholders
            self.learning_rate_holder = tf.placeholder(dtype=tf.float32)
            self.correct_label_holder = tf.placeholder(
                dtype=tf.float32, shape=(None, None, None, self.num_classes))

            # Define network and training operations
            self.load_vgg(sess)
            self.layers()
            self.optimize_cross_entropy()

            # Initialize variables
            sess.run(tf.global_variables_initializer())

            # Train the model
            self.train(sess)

            # Save images using the helper
            helper.save_inference_samples(self.runs_dir, self.data_dir, sess,
                                          self.image_shape, self.logits,
                                          self.keep_prob, self.input_image)

            # Save the model
            self.save_model(sess)
def run():
    num_classes = 2
    image_shape = (160, 576)
    data_dir = './data'
    runs_dir = './runs'
    tests.test_for_kitti_dataset(data_dir)

    # Download pretrained vgg model
    helper.maybe_download_pretrained_vgg(data_dir)

    # OPTIONAL: Train and Inference on the cityscapes dataset instead of the Kitti dataset.
    # You'll need a GPU with at least 10 teraFLOPS to train on.
    #  https://www.cityscapes-dataset.com/

    # Hyperparameters
    epochs = 20
    batch_size = 5

    with tf.Session() as sess:
        # Path to vgg model
        vgg_path = os.path.join(data_dir, 'vgg')
        # Create function to get batches
        get_batches_fn = helper.gen_batch_function(os.path.join(data_dir, 'data_road/training'), image_shape)

        # OPTIONAL: Augment Images for better results
        #  https://datascience.stackexchange.com/questions/5224/how-to-prepare-augment-images-for-neural-network

        # Build NN using load_vgg, layers, and optimize function
        input_image, keep_prob, layer3_out, layer4_out, layer7_out = load_vgg(sess, vgg_path)
        layer_output = layers(layer3_out, layer4_out, layer7_out, num_classes)
        correct_label = tf.placeholder(dtype=tf.float32, shape=(None, None, None, num_classes))
        learning_rate = tf.placeholder(dtype=tf.float32)
        logits, train_op, cross_entropy_loss = optimize(layer_output, correct_label, learning_rate, num_classes)

        # Train NN using the train_nn function
        sess.run(tf.global_variables_initializer())
        train_nn(sess=sess, epochs=epochs, batch_size=batch_size, get_batches_fn=get_batches_fn, train_op=train_op, cross_entropy_loss=cross_entropy_loss, input_image=input_image,
                 correct_label=correct_label, keep_prob=keep_prob, learning_rate=learning_rate)

        # Save inference data using helper.save_inference_samples
        output_dir = helper.save_inference_samples(runs_dir, data_dir, sess, image_shape, logits, keep_prob, input_image)

        # Compose video of images
        output = 'segmentation.mp4'
        clip = ImageSequenceClip(output_dir, fps=15)
        clip.write_videofile(output, audio=False)
Beispiel #17
0
def run():
    tests.test_for_kitti_dataset(data_dir)
    # Download pretrained vgg model
    helper.maybe_download_pretrained_vgg(data_dir)

    # OPTIONAL: Train and Inference on the cityscapes dataset instead of the Kitti dataset.
    # You'll need a GPU with at least 10 teraFLOPS to train on.
    #  https://www.cityscapes-dataset.com/

    with tf.Session() as sess:
        # Path to vgg model
        vgg_path = os.path.join(data_dir, 'vgg')
        # Create function to get batches
        get_batches_fn = helper.gen_batch_function(os.path.join(data_dir, 'data_road/training'), image_shape)

        # OPTIONAL: Augment Images for better results
        #  https://datascience.stackexchange.com/questions/5224/how-to-prepare-augment-images-for-neural-network

        # TODO: Build NN using load_vgg, layers, and optimize function
        epochs = 50
        batch_size = 4
        learning_rate = tf.placeholder(tf.float32)
        correct_label = tf.placeholder(tf.float32, [None, image_shape[0], image_shape[1], num_classes])

        input_image, keep_prob, layer3_out, layer4_out, layer7_out = load_vgg(sess, vgg_path)

        layer_output = layers(layer3_out, layer4_out, layer7_out, num_classes)

        logits, train_optimizer, cross_entropy_loss = optimize(layer_output, correct_label, learning_rate, num_classes)

        # TODO: Train NN using the train_nn function
        f = open(csv_filename, 'w')
        str_line = "%s,%s,%.5s\n" % ('Number', 'Epoch', 'loss')
        f.write(str_line)
        f.close()

        train_nn(sess, epochs, batch_size, get_batches_fn, train_optimizer, cross_entropy_loss, input_image, correct_label, keep_prob, learning_rate,logits)


        # TODO: Save inference data using helper.save_inference_samples
        output_path = helper.save_inference_samples(runs_dir, data_dir, sess, image_shape, logits, keep_prob, input_image,'final_result_')

        # OPTIONAL: Apply the trained model to a video
        helper.save_video(output_path, 'final_result.avi',  5, image_shape)
Beispiel #18
0
def train_nn(sess, epochs, batch_size, get_batches_fn, train_op, cross_entropy_loss, input_image,
             correct_label, keep_prob, learning_rate,logits):
    """
    Train neural network and print out the loss during training.
    :param sess: TF Session
    :param epochs: Number of epochs
    :param batch_size: Batch size
    :param get_batches_fn: Function to get batches of training data.  Call using get_batches_fn(batch_size)
    :param train_op: TF Operation to train the neural network
    :param cross_entropy_loss: TF Tensor for the amount of loss
    :param input_image: TF Placeholder for input images
    :param correct_label: TF Placeholder for label images
    :param keep_prob: TF Placeholder for dropout keep probability
    :param learning_rate: TF Placeholder for learning rate
    """
    # TODO: Implement function

    sess.run(tf.global_variables_initializer())
    for epoch in range(epochs):
        total_training_loss = 0
        num_samples = 0
        for batch, (image, label) in enumerate(get_batches_fn(batch_size)): #for X, y in get_batches_fn(batch_size):
            loss, _ = sess.run(  [cross_entropy_loss, train_op],  feed_dict={input_image: image, correct_label: label, keep_prob: 0.8, learning_rate: 1e-4} )
            print ('Epoch:',str(epoch).zfill(2), '   batch:', str(batch).zfill(2), '   batch size:', len(label), '   training loss: ', loss )
            total_training_loss += loss*len(label)
            num_samples +=  len(label)
            epoch_training_loss = total_training_loss/num_samples
        print ('Epoch (summary):', str(epoch).zfill(2), '     training loss: ', epoch_training_loss)
        #save the data in a csv file
        if os.path.exists(csv_filename):
            f = open(csv_filename, 'a')
            str_line = "%i,%s,%.8f\n" % (epoch,  'Epoch'+ str(epoch).zfill(2), epoch_training_loss )
            f.write(str_line)
            f.close()

        if data_dir is not None and epoch > 0 and (epoch % 5) == 0:
            output_path =helper.save_inference_samples(runs_dir, data_dir, sess, image_shape, logits, keep_prob, input_image,'epoch_'+str(epoch).zfill(2)+'_')
            print
            helper.save_video(output_path, 'epoch_'+str(epoch).zfill(2) +'.avi', 5, image_shape)
            print ('Generating video for Eposh: ', epoch)
Beispiel #19
0
def run():
    num_classes = 2
    image_shape = (160, 576)
    data_dir = './data'
    runs_dir = './runs'
    tests.test_for_kitti_dataset(data_dir)

    # Download pretrained vgg model
    helper.maybe_download_pretrained_vgg(data_dir)

    # OPTIONAL: Train and Inference on the cityscapes dataset instead of the Kitti dataset.
    # You'll need a GPU with at least 10 teraFLOPS to train on.
    #  https://www.cityscapes-dataset.com/
    with tf.Session() as sess:
        # Path to vgg model
        vgg_path = os.path.join(data_dir, 'vgg')
        # Create function to get batches
        get_batches_fn = helper.gen_batch_function(
            os.path.join(data_dir, 'data_road/training'), image_shape)

        # OPTIONAL: Augment Images for better results
        #  https://datascience.stackexchange.com/questions/5224/how-to-prepare-augment-images-for-neural-network

        # TODO: Build NN using load_vgg, layers, and optimize function

        # TF placeholders

        correct_label = tf.placeholder(tf.int32,
                                       [None, None, None, num_classes],
                                       name='correct_label')
        learning_rate = tf.placeholder(tf.float32, name='learning_rate')

        # Getting layers from vgg.
        input_image, keep_prob, vgg_layer3_out, vgg_layer4_out, vgg_layer7_out = load_vgg(
            sess, vgg_path)

        nn_last_layer = layers(vgg_layer3_out, vgg_layer4_out, vgg_layer7_out,
                               num_classes)

        logits, train_op, cross_entropy_loss = optimize(
            nn_last_layer, correct_label, learning_rate, num_classes)

        # TODO: Train NN using the train_nn function

        epochs = 48  # 6 12 10 24 30 48 50
        batch_size = 5

        train_nn(sess, epochs, batch_size, get_batches_fn, train_op,
                 cross_entropy_loss, input_image, correct_label, keep_prob,
                 learning_rate)

        # TODO: Save inference data using helper.save_inference_samples
        runs_dir = runs_dir + str(epochs)
        helper.save_inference_samples(runs_dir, data_dir, sess, image_shape,
                                      logits, keep_prob, input_image)
        summary_writer = tf.summary.FileWriter('/home/ubuntu/graph',
                                               graph_def=sess.graph_def)
        # OPTIONAL: Apply the trained model to a video
        # Save model weights to disk
        saver = tf.train.Saver()
        model_path = "/model_{}.ckpt".format(str(epochs))
        save_path = saver.save(sess, model_path)
        print("Model saved in file: %s" % save_path)
def run():
    global p_keep, r_learning, BATCH_SIZE
    num_classes = 2
    image_shape = (160, 576)
    data_dir = './data'
    runs_dir = './runs'

    Epochs = 30
    #BATCH_SIZE = 16
    if len(sys.argv) > 1:
        BATCH_SIZE = int(sys.argv[1])
    if len(sys.argv) > 2:
        p_keep = float(sys.argv[2])
    tests.test_for_kitti_dataset(data_dir)

    # Download pretrained vgg model
    helper.maybe_download_pretrained_vgg(data_dir)

    # OPTIONAL: Train and Inference on the cityscapes dataset instead of the Kitti dataset.
    # You'll need a GPU with at least 10 teraFLOPS to train on.
    #  https://www.cityscapes-dataset.com/
    tf.reset_default_graph()

    with tf.Session() as sess:
        # Path to vgg model
        vgg_path = os.path.join(data_dir, 'vgg')
        # Create function to get batches
        get_batches_fn = helper.gen_batch_function(
            os.path.join(data_dir, 'data_road/training'), image_shape)

        # OPTIONAL: Augment Images for better results
        #  https://datascience.stackexchange.com/questions/5224/how-to-prepare-augment-images-for-neural-network

        # TODO: Build NN using load_vgg, layers, and optimize function
        input_image, keep_prob, layer3_out, layer4_out, layer7_out = load_vgg(
            sess, vgg_path)
        tf.Print(keep_prob, [keep_prob])
        #p_keep = keep_prob.get_Variable()

        #print("keep_prob from VGG: %f  keep_prob in project: %f"%(keep_prob,p_keep))
        final_out = layers(layer3_out, layer4_out, layer7_out, num_classes)
        correct_label = tf.placeholder(tf.float32,
                                       (None, None, None, num_classes))
        learning_rate = tf.placeholder(tf.float32)
        logits, train_op, cross_entropy_loss = optimize(
            final_out, correct_label, learning_rate, num_classes)

        # TODO: Train NN using the train_nn function
        sess.run(tf.global_variables_initializer())
        train_nn(sess, Epochs, BATCH_SIZE, get_batches_fn, train_op,
                 cross_entropy_loss, input_image, correct_label, keep_prob,
                 learning_rate)
        saver = tf.train.Saver()
        saver.save(sess, "./runs/Batch%d_Pkeep%f.ckpt" % (BATCH_SIZE, p_keep))

        # TODO: Save inference data using helper.save_inference_samples
        #  helper.save_inference_samples(runs_dir, data_dir, sess, image_shape, logits, keep_prob, input_image)
        helper.save_inference_samples(runs_dir, data_dir, sess, image_shape,
                                      logits, keep_prob, input_image)
        # OPTIONAL: Apply the trained model to a video
        video_name = 'dataroad_marked.mp4'
        helper.gen_test_output_video(data_dir, sess, image_shape, logits,
                                     keep_prob, input_image, video_name)
        print('Writing video Finished.')
Beispiel #21
0
def run():
    runs_dir = './runs'

    print("\n\nTesting for datatset presence......")
    tests.test_looking_for_dataset(data_dir)

    # Download pretrained vgg model
    helper.maybe_download_pretrained_vgg(vgg_dir)

    # OPTIONAL: Train and Inference on the cityscapes dataset instead of the Kitti dataset.
    # You'll need a GPU with at least 10 teraFLOPS to train on.
    #  https://www.cityscapes-dataset.com/

    with tf.Session() as sess:
        # Create function to get batches
        get_batches_fn = helper.gen_batch_function(
            glob_trainig_images_path, 
            glob_labels_trainig_image_path,
            image_shape)

        # OPTIONAL: Augment Images for better results
        #  https://datascience.stackexchange.com/questions/5224/how-to-prepare-augment-images-for-neural-network

        # Build NN using load_vgg, layers, and optimize function KK-DONE

        # TF placeholders
        correct_label = tf.placeholder(tf.int32, [None, None, None, num_classes], name='correct_label')
        learning_rate = tf.placeholder(tf.float32, name='learning_rate')
        
        input_image, keep_prob, layer3_out, layer4_out, layer7_out = load_vgg(sess, vgg_dir)
        layer_output = layers(layer3_out, layer4_out, layer7_out, num_classes)
        logits, train_op, cross_entropy_loss = optimize(layer_output, correct_label, learning_rate, num_classes)

        # tfImShape = tf.get_variable("image_shape")
        # tfLogits = tf.get_variable("logits")
        # tfKeepProb = tf.get_variable("keep_prob") TEM NO TF

        print(100*'*')
        print(image_shape)
        #(160, 576)
        print(100*'*')
        print(logits)
        #Tensor("Reshape:0", shape=(?, 2), dtype=float32)
        print(100*'*')
        print(keep_prob)
        #Tensor("keep_prob:0", dtype=float32)
        print(100*'*')
        print(input_image)
        #Tensor("image_input:0", shape=(?, ?, ?, 3), dtype=float32)
        print(100*'*')

        init_op = tf.global_variables_initializer()

        sess.run(init_op)
        train_nn(sess, epochs, batch_size, get_batches_fn, train_op, cross_entropy_loss, input_image,
                 correct_label, keep_prob, learning_rate)


        folderToSaveModel = "model"

        # Add ops to save and restore all the variables.
        saver = tf.train.Saver()
        
        for i, var in enumerate(saver._var_list):
            print('Var {}: {}'.format(i, var))

        if not os.path.exists(folderToSaveModel):
            os.makedirs(path)

        pathSaveModel = os.path.join(folderToSaveModel, "model.ckpt")
        pathSaveModel = saver.save(sess, pathSaveModel)
        print(colored("Model saved in path: {}".format(pathSaveModel), 'green'))
        helper.save_inference_samples(runs_dir, data_dir, sess, image_shape, logits, keep_prob, input_image)
def run():
    num_classes = 2
    image_shape = (160, 576)
    data_dir = './data'
    runs_dir = './runs'
    model_path = './teeekay/'
    model = FLAGS.model
    #'ss_mdl10'
    # mdl9 15 * 500 at lr = 0.000015
    # mdl8 15 * 500 images at lr = 0.000025 
    # mdl7 5 * 500 images at lr = 0.00001 
    # mdl6 with cityscapes data 
    #mdl4 100 at 0.00001  
    #mdl3 50 at .00003
    #mdl2 25 at .00005
    print ("model = '{ssmodel}'".format(ssmodel=model))
 
    with tf.name_scope("data"):
        correct_label = tf.placeholder(tf.int32, [None, None, None, num_classes], name='correct_label')

    learning_rate = tf.placeholder(tf.float32, name='learning_rate')

    Kepochs = FLAGS.epochs  # set to reasonable value
    Kbatch_size = FLAGS.batch_size
    KLearningRate = FLAGS.learn_rate
    Kl2_regularization_rate = FLAGS.l2_regularization_rate

    print("Kepochs ={}, Kbatch_size= {}, KLearningRate={:3.6f}, Kl2_regularization_rate ={:3.6f} Model name ={}"
          .format(Kepochs, Kbatch_size, KLearningRate, Kl2_regularization_rate, model_path+model))

    # Download pretrained vgg model
    print("helper.maybe_download_pretrained_vgg({})".format(data_dir))
    helper.maybe_download_pretrained_vgg(data_dir)

    # Path to vgg model
    vgg_path = os.path.join(data_dir, 'vgg')
    training_data_dir = os.path.join(data_dir, 'data_road/training')

    # Create function to get batches
    # get_batches_fn = helper.gen_batch_function(training_data_dir, image_shape)
    # test with cityscapes data
    get_batches_fn = helper.gen_batch_function(data_dir, image_shape)
    print("get_batches_fn = {}".format(get_batches_fn))

    # OPTIONAL: Train and Inference on the cityscapes dataset instead of the Kitti dataset.
    # You'll need a GPU with at least 10 teraFLOPS to train on.
    #  https://www.cityscapes-dataset.com/


    config = tf.ConfigProto()
    tf.log_device_placement=True
    config.gpu_options.allow_growth = True
    config.gpu_options.per_process_gpu_memory_fraction = 0.8

    with tf.Session(config = config) as sess:
        
        # OPTIONAL: Augment Images for better results 
        #  https://datascience.stackexchange.com/questions/5224/how-to-prepare-augment-images-for-neural-network

        if FLAGS.mode == 0:  # Train the model

            print("load_vgg")
            input_image, keep_prob, layer3_out, layer4_out, layer7_out = load_vgg(sess, vgg_path)
            with tf.name_scope("data"):
                tf.summary.image('input_images', input_image, max_outputs=3)

            print("layers")
            last_layer = layers(layer3_out, layer4_out, layer7_out, num_classes)

            print("optimize")

            logits, train_op, combined_loss, iou_obj = optimize(last_layer, correct_label, learning_rate, num_classes, iou_test=True)

            print("Train!")
            initialized = tf.global_variables_initializer()
            sess.run(initialized)
            
            train_nn(sess, Kepochs, Kbatch_size, get_batches_fn, train_op, combined_loss, input_image, correct_label, 
                    keep_prob, learning_rate, Kl2_regularization_rate, lr=KLearningRate, iou_obj=iou_obj)

            # Save model result
            saver = tf.train.Saver()
            save_path = saver.save(sess, model_path+model)
            print("\nSaved model at {}.".format(save_path))
            print("Kepochs ={}, Kbatch_size= {}, KLearningRate={:3.6f}, Kl2_regularization_rate ={:3.6f} Model name ={}"
                  .format(Kepochs, Kbatch_size, KLearningRate, Kl2_regularization_rate, model_path+model))

            print("saving samples")
            helper.save_inference_samples(runs_dir, data_dir, sess, image_shape, logits, keep_prob, input_image)

        elif FLAGS.mode == 1: # run inference on images from kitti dataset
            # Load saved model
            saver = tf.train.import_meta_graph(model_path+model+'.meta')
            saver.restore(sess, tf.train.latest_checkpoint(model_path))
            graph = tf.get_default_graph()
            img_input = graph.get_tensor_by_name('image_input:0')
            keep_prob = graph.get_tensor_by_name('keep_prob:0')
            last_layer = graph.get_tensor_by_name('decoder/last_layer:0')
            logits = tf.reshape(last_layer, (-1, num_classes))

            # Process test images
            print("saving samples")
            helper.save_inference_samples(runs_dir, data_dir, sess, image_shape,
                                            logits, keep_prob, img_input)
            exit()

        elif FLAGS.mode == 2: # Run inference on Video file
            def process_frame(sess, logits, keep_prob, image_pl, frame, frame_shape, image_shape):
                """
                Generate output using the video frames
                :param sess: TF session
                :param logits: TF Tensor for the logits
                :param keep_prob: TF Placeholder for the dropout keep robability
                :param image_pl: TF Placeholder for the image placeholder
                :param frame: image frame in 
                :param frame_shape: Tuple - Shape of frame coming in  and going out
                :param image_shape: Tuple - Shape of image used in TF model
                :return: np.array of video frame image with superimposed semantic segmentation
                """
                softmax_criteria = 0.5
                softmax_criteria1 = 0.45
                softmax_criteria2 = 0.4

                # resize to shape used in model
                img_resized = scipy.misc.imresize(frame, image_shape, interp='lanczos')

                # inference with no dropout
                im_softmax = sess.run(
                    [tf.nn.softmax(logits)],
                    {keep_prob: 1.0, img_input: [img_resized]})

                # reshape to image dimensions
                im_softmax = im_softmax[0][:, 1].reshape(image_shape[0], image_shape[1])
                # apply mask anywhere softmax is > softmax_criteria
                segmentation = (im_softmax > softmax_criteria).reshape(image_shape[0], image_shape[1], 1)
                segmentation1 = (np.logical_and(im_softmax <= softmax_criteria, im_softmax > softmax_criteria1)).reshape(image_shape[0], image_shape[1], 1)
                segmentation2 = (np.logical_and(im_softmax <= softmax_criteria1, im_softmax > softmax_criteria2)).reshape(image_shape[0], image_shape[1], 1)

                # create mask as green and semitransparent
                mask = np.dot(segmentation, np.array([[0, 255, 0, 127]]))
                mask1 = np.dot(segmentation1, np.array([[0, 225, 0, 63]]))
                mask2 = np.dot(segmentation2, np.array([[0, 200, 0, 31]]))

                mask = scipy.misc.toimage(mask, mode="RGBA")
                mask1 = scipy.misc.toimage(mask1, mode="RGBA")
                mask2 = scipy.misc.toimage(mask2, mode="RGBA")

                mask_resized = scipy.misc.imresize(mask, frame_shape, mode="RGBA")
                mask_resized1 = scipy.misc.imresize(mask1, frame_shape, mode="RGBA")
                mask_resized2 = scipy.misc.imresize(mask2, frame_shape, mode="RGBA")

                mask_resized = scipy.misc.toimage(mask_resized, mode="RGBA")
                mask_resized1 = scipy.misc.toimage(mask_resized1, mode="RGBA")
                mask_resized2 = scipy.misc.toimage(mask_resized2, mode="RGBA")

                frame_im = scipy.misc.toimage(frame)
                frame_im.paste(mask_resized2, box=None, mask=mask_resized2)

                frame_im.paste(mask_resized1, box=None, mask=mask_resized1)
                frame_im.paste(mask_resized, box=None, mask=mask_resized)
                return np.array(frame_im)


            # cap = imageio.get_reader('./video/harder_challenge_video.mp4')
            cap = imageio.get_reader('./video/NeighborhoodStreet.mov')

            md = cap.get_meta_data()
            fps = float(md['fps'])
            framewidth = int(md['size'][0])
            frameheight = int(md['size'][1])
            framecount = int(md['nframes'])
            frame_shape = (frameheight, framewidth)
            
            print("Video opened with framecount of {:4,d}, dimensions ({:4d},{:4d}), and speed of {:3.03f} fps."
                 .format(framecount, framewidth, frameheight, fps))

            # Load saved model
            saver = tf.train.import_meta_graph(model_path+model+'.meta')
            saver.restore(sess, tf.train.latest_checkpoint(model_path))
            graph = tf.get_default_graph()
            img_input = graph.get_tensor_by_name('image_input:0')
            keep_prob = graph.get_tensor_by_name('keep_prob:0')
            last_layer = graph.get_tensor_by_name('decoder/last_layer:0')
            logits = tf.reshape(last_layer, (-1, num_classes))

            fileruntime = datetime.datetime.now().strftime("%Y%m%d%H:%M:%S")
            outfilename = './video/ss_video_output_' + model + fileruntime + '.mp4'

            out = imageio.get_writer(outfilename, fps=fps)

            frames = 0

            for frame in cap:
                frames += 1
               
                #uncomment for early stop
                #framecount = 150
                
                if frames > framecount:
                    print("\nClosed video after passing expected framecount of {}".format(frames-1))
                    break
                
                out_frame = process_frame(sess, logits, keep_prob, img_input, frame, frame_shape, image_shape)

                out.append_data(out_frame)
                print("Frames: {0:02d}, Seconds: {1:03.03f}".format(frames, frames/fps), end='\r')
                
            print("finished processing video - output video is {}".format(outfilename))
            cap.close()
            out.close()
Beispiel #23
0
def run():
    num_classes = 2
    image_shape = (160, 576)
    data_dir = './data'
    runs_dir = './runs'
    model_dir = './data/model/model.ckpt'
    tests.test_for_kitti_dataset(data_dir)

    # Download pretrained vgg model
    helper.maybe_download_pretrained_vgg(data_dir)

    # OPTIONAL: Train and Inference on the cityscapes dataset instead of the Kitti dataset.
    # You'll need a GPU with at least 10 teraFLOPS to train on.
    #  https://www.cityscapes-dataset.com/

    with tf.Session() as sess:
        # Path to vgg model
        vgg_path = os.path.join(data_dir, 'vgg')
        # Create function to get batches
        get_batches_fn = helper.gen_batch_function(
            os.path.join(data_dir, 'data_road/training'), image_shape)

        # OPTIONAL: Augment Images for better results
        #  https://datascience.stackexchange.com/questions/5224/how-to-prepare-augment-images-for-neural-network

        correct_label = tf.placeholder(tf.int32,
                                       [None, None, None, num_classes])
        learning_rate = tf.placeholder(tf.float32)

        input_image, keep_prob, vgg_layer3_out, vgg_layer4_out, vgg_layer7_out = load_vgg(
            sess, vgg_path)

        nn_last_layer = layers(vgg_layer3_out, vgg_layer4_out, vgg_layer7_out,
                               num_classes)

        logits, train_op, cross_entropy_loss, iou_obj = optimize(
            nn_last_layer, correct_label, learning_rate, num_classes)

        sess.run(tf.global_variables_initializer())
        sess.run(tf.local_variables_initializer())

        tf_saver = tf.train.Saver(max_to_keep=5)

        if training:

            train_nn(sess, epochs, batch_size, get_batches_fn, train_op,
                     cross_entropy_loss, input_image, correct_label, keep_prob,
                     learning_rate, iou_obj)

            model_save = tf_saver.save(sess, model_dir)

            print("Model saved to: ", model_dir)

        else:

            tf_saver.restore(sess, model_dir)

            print("Model restored from: ", model_dir)

        if video:

            input_vid = "./videoinput.mp4"

            video_pipeline(input_vid, runs_dir, sess, image_shape, logits,
                           keep_prob, input_image)

        else:

            helper.save_inference_samples(runs_dir, data_dir, sess,
                                          image_shape, logits, keep_prob,
                                          input_image)
Beispiel #24
0
def run():
    global image_shape, sess, logits, keep_prob, input_image
    num_classes = 2
    image_shape = (160, 576)
    data_dir = '/data'
    runs_dir = './runs'
    tests.test_for_kitti_dataset(data_dir)

    # Download pre-trained vgg model
    #helper.maybe_download_pretrained_vgg(data_dir)

    # OPTIONAL: Train and Inference on the cityscapes dataset instead of the Kitti dataset.
    # You'll need a GPU with at least 10 teraFLOPS to train on.
    #  https://www.cityscapes-dataset.com/

    with tf.Session() as sess:
        # Path to vgg model
        vgg_path = os.path.join(data_dir, 'vgg')
        # Create function to get batches
        get_batches_fn = helper.gen_batch_function(
            os.path.join(data_dir, 'data_road/training'), image_shape)

        # OPTIONAL: Augment Images for better results
        #  https://datascience.stackexchange.com/questions/5224/how-to-prepare-augment-images-for-neural-network

        # TODO: Build NN using load_vgg, layers, and optimize function

        epochs = 30
        batch_size = 8
        learning_rate = tf.placeholder(tf.float32)
        correct_label = tf.placeholder(tf.int32,
                                       [None, None, None, num_classes])

        input_image, keep_prob, layer3_out, layer4_out, layer7_out = load_vgg(
            sess, vgg_path)
        layer_output = layers(layer3_out, layer4_out, layer7_out, num_classes)
        logits, optimizer, cross_entropy_loss = optimize(
            layer_output, correct_label, learning_rate, num_classes)

        # TODO: Train NN using the train_nn function
        saver = tf.train.Saver()
        sess.run(tf.global_variables_initializer())

        if (load_net):
            checkpoint = tf.train.get_checkpoint_state("save_network")
            if checkpoint and checkpoint.model_checkpoint_path:
                saver.restore(sess, checkpoint.model_checkpoint_path)
                print("Successfully loaded:", checkpoint.model_checkpoint_path)
            else:
                print("Could not find old network weights")

        if (train_net):
            train_nn(sess, epochs, batch_size, get_batches_fn, optimizer,
                     cross_entropy_loss, input_image, correct_label, keep_prob,
                     learning_rate)

        # TODO: Save inference data using helper.save_inference_samples


#        saver.restore(sess, tf.train.latest_checkpoint("./save_network"))
        if (load_net):
            helper.save_inference_samples(runs_dir, data_dir, sess,
                                          image_shape, logits, keep_prob,
                                          input_image)

        if (save_net):
            save_path = saver.save(sess, "./save_network/model_60_8")
def run():
    num_classes = 2
    image_shape = (160, 576)
    data_dir = './data'
    runs_dir = './runs'
    tests.test_for_kitti_dataset(data_dir)

    # Download pretrained vgg model
    helper.maybe_download_pretrained_vgg(data_dir)

    # OPTIONAL: Train and Inference on the cityscapes dataset instead of the Kitti dataset.
    # You'll need a GPU with at least 10 teraFLOPS to train on.
    #  https://www.cityscapes-dataset.com/

    with tf.Session() as sess:

        train_model = True
        if (train_model):
            # Path to vgg model
            vgg_path = os.path.join(data_dir, 'vgg')
            # Create function to get batches
            get_batches_fn = helper.gen_batch_function(
                os.path.join(data_dir, 'data_road/training'), image_shape)

            # OPTIONAL: Augment Images for better results
            #  https://datascience.stackexchange.com/questions/5224/how-to-prepare-augment-images-for-neural-network

            # TODO: Build NN using load_vgg, layers, and optimize function

            epochs = 40
            batch_size = 6

            #Placeholders
            correct_label = tf.placeholder(tf.int32,
                                           [None, None, None, num_classes],
                                           name='correct_label')
            learning_rate = tf.placeholder(tf.float32, name='learning_rate')

            input_image, keep_prob, layer3_out, layer4_out, layer7_out = load_vgg(
                sess, vgg_path)

            nn_last_layer = layers(layer3_out, layer4_out, layer7_out,
                                   num_classes)

            logits, train_op, cross_entropy_loss = optimize(
                nn_last_layer, correct_label, learning_rate, num_classes)
            # TODO: Train NN using the train_nn function
            train_nn(sess, epochs, batch_size, get_batches_fn, train_op,
                     cross_entropy_loss, input_image, correct_label, keep_prob,
                     learning_rate)
            # TODO: Save inference data using helper.save_inference_samples
            helper.save_inference_samples(runs_dir, data_dir, sess,
                                          image_shape, logits, keep_prob,
                                          input_image)

            save_model = False
            # OPTIONAL: Apply the trained model to a video
            if (save_model):
                saver = tf.train.Saver()
                save_file = './models/semantic-segmantation-model.ckpt'
                print("Saving model...")
                #string_model_name = './models/semantic-segmantation-model-'+str(time.strftime("%d_%m_%Y"))
                saver.save(sess, save_file)
                print("Saving model finished...")
def run():
    tests.test_for_kitti_dataset(DATA_DIR)

    # Download pretrained vgg model
    helper.maybe_download_pretrained_vgg(DATA_DIR)

    # OPTIONAL: Train and Inference on the cityscapes dataset instead of the Kitti dataset.
    # You'll need a GPU with at least 10 teraFLOPS to train on.
    #  https://www.cityscapes-dataset.com/

    printStatistics()

    with tf.Session() as sess:
        # Path to vgg model
        vgg_path = os.path.join(DATA_DIR, 'vgg')
        # Create function to get batches
        get_batches_fn = helper.gen_batch_function(
            os.path.join(DATA_DIR, 'data_road/training'), IMAGE_SHAPE)

        # OPTIONAL: Augment Images for better results
        #  https://datascience.stackexchange.com/questions/5224/how-to-prepare-augment-images-for-neural-network

        # Build NN using load_vgg, layers, and optimize function
        print("Load VGG model...")
        input_image, keep_prob, layer_3, layer_4, layer_7 = load_vgg(
            sess, vgg_path)
        layer_output = layers(layer_3, layer_4, layer_7, NUM_CLASSES)

        label = tf.placeholder(tf.int32, shape=[None, None, None, NUM_CLASSES])
        learning_rate = tf.placeholder(tf.float32)

        iou_obj = None

        if IOU_ENABLED:
            logits, train_op, cross_entropy_loss, iou_obj, accuracy_op = optimize(
                layer_output,
                label,
                learning_rate,
                NUM_CLASSES,
                iou_enabled=IOU_ENABLED)
        else:
            logits, train_op, cross_entropy_loss, accuracy_op = optimize(
                layer_output, label, learning_rate, NUM_CLASSES)

        # Train NN using the train_nn function
        print("Start training...")
        train_nn(sess, EPOCHS, BATCH_SIZE, get_batches_fn, train_op,
                 cross_entropy_loss, input_image, label, keep_prob,
                 learning_rate, accuracy_op, iou_obj)

        # Safe the trained model
        print("Save trained model...")
        saver = tf.train.Saver()
        saver.save(sess, './runs/semantic_segmentation_model.ckpt')

        print("Saving the model")
        if "saved_model" in os.listdir(os.getcwd()):
            shutil.rmtree("./saved_model")
        builder = tf.saved_model.builder.SavedModelBuilder("./saved_model")
        builder.add_meta_graph_and_variables(sess, ["vgg16"])
        builder.save()

        # Save inference data using helper.save_inference_samples
        print("Save inference samples...")
        helper.save_inference_samples(RUNS_DIR, DATA_DIR, sess, IMAGE_SHAPE,
                                      logits, keep_prob, input_image)
def run():
    parser = argparse.ArgumentParser()
    parser.add_argument('--train',
                        action='store_true',
                        help='Run the training')
    parser.add_argument('--restore',
                        type=str,
                        nargs='?',
                        help='Restore from a checkpoint')
    parser.add_argument('--video',
                        type=str,
                        nargs='?',
                        help='Run segmentation on a video')
    args = parser.parse_args()

    data_dir = './data'
    runs_dir = './runs'
    tests.test_for_kitti_dataset(data_dir)

    # Download pretrained vgg model
    helper.maybe_download_pretrained_vgg(data_dir)

    # OPTIONAL: Train and Inference on the cityscapes dataset instead of the Kitti dataset.
    # You'll need a GPU with at least 10 teraFLOPS to train on.
    #  https://www.cityscapes-dataset.com/

    # Create function to get batches
    get_batches_fn = helper.gen_batch_function(
        os.path.join(data_dir, 'data_road/training'), IMAGE_SHAPE)

    # Path to vgg model
    vgg_path = os.path.join(data_dir, 'vgg')

    with tf.Session() as sess:

        # Returns the three layers, keep probability and input layer from the vgg architecture
        image_input, keep_prob, layer3_out, layer4_out, layer7_out = load_vgg(
            sess, vgg_path)

        # The resulting network architecture from adding a decoder on top of the given vgg model
        model_output = layers(layer3_out, layer4_out, layer7_out, NUM_CLASSES)

        # placeholders
        correct_label = tf.placeholder(
            tf.float32, [None, IMAGE_SHAPE[0], IMAGE_SHAPE[1], NUM_CLASSES])
        learning_rate = tf.placeholder(tf.float32)

        # Returns the output logits, training operation and cost operation to be used
        # - logits: each row represents a pixel, each column a class
        # - train_op: function used to get the right parameters to the model to correctly label the pixels
        # - cross_entropy_loss: function outputting the cost which we are minimizing, lower cost should yield higher accuracy
        logits, train_op, cross_entropy_loss = optimize(
            model_output, correct_label, learning_rate, NUM_CLASSES)

        # Initialize all variables
        sess.run(tf.global_variables_initializer())
        sess.run(tf.local_variables_initializer())

        saver = tf.train.Saver()

        if args.restore:
            saver.restore(sess, args.restore)
            print('Model restored from {0}'.format(args.restore))

        if args.train:
            # Train the neural network
            train_nn(sess, EPOCHS, BATCH_SIZE, get_batches_fn, train_op,
                     cross_entropy_loss, image_input, correct_label, keep_prob,
                     learning_rate)

            pathlib.Path(CHECKPOINT_FOLDER).mkdir(parents=True, exist_ok=True)
            save_path = saver.save(sess, CHECKPOINT_PREFIX)

            print("Model saved in path: {}".format(save_path))

        if args.video:
            from moviepy.editor import VideoFileClip

            def process_image(image):
                return helper.process_image(sess, logits, keep_prob,
                                            image_input, image, IMAGE_SHAPE)

            clip = VideoFileClip(args.video)
            white_clip = clip.fl_image(process_image)
            output_file = "{0}_{2}.{1}".format(*args.video.rsplit('.', 1) +
                                               ['output'])
            white_clip.write_videofile(output_file, audio=False)
        else:
            # Run the model with the test images and save each painted output image (roads painted green)
            helper.save_inference_samples(runs_dir, data_dir, sess,
                                          IMAGE_SHAPE, logits, keep_prob,
                                          image_input)

        print("All done!")
Beispiel #28
0
def run():
    num_classes = 13
    image_shape = (608, 800)
    data_dir = '../data'
    runs_dir = './runs'
    epochs = 10
    batch_size = 16

    if len(sys.argv) > 1:
        mode = sys.argv[1].lower()
    else:
        mode = "train"

    print("Current mode: ", mode)

    # Download pretrained vgg model
    helper.maybe_download_pretrained_vgg(data_dir)

    # OPTIONAL: Train and Inference on the cityscapes dataset instead of the Kitti dataset.
    # You'll need a GPU with at least 10 teraFLOPS to train on.
    #  https://www.cityscapes-dataset.com/

    LOGDIR = os.path.join('./data', 'fcn8_log')

    if mode == "train":

        with tf.Session() as sess:
            # Path to vgg model
            vgg_path = os.path.join(data_dir, 'vgg')
            # Create function to get batches
            get_batches_fn = helper.gen_batch_function(
                os.path.join(data_dir, 'Train'), image_shape)

            # OPTIONAL: Augment Images for better results
            #  https://datascience.stackexchange.com/questions/5224/how-to-prepare-augment-images-for-neural-network

            # Build NN using load_vgg, layers, and optimize function
            input_image, keep_prob, layer3_out, layer4_out, layer7_out = load_vgg(
                sess, vgg_path)
            layer_output = layers(layer3_out, layer4_out, layer7_out,
                                  num_classes)

            correct_label = tf.placeholder(
                tf.int32, (None, image_shape[0], image_shape[1], num_classes),
                name='correct_label')
            learning_rate = tf.placeholder(tf.float32, name='learning_rate')

            logits, train_op, cross_entropy_loss = optimize(
                layer_output, correct_label, learning_rate, num_classes)

            merged = tf.summary.merge_all()
            train_writer = tf.summary.FileWriter(LOGDIR, graph=sess.graph)

            # Train NN using the train_nn function
            train_nn(sess,
                     epochs,
                     batch_size,
                     get_batches_fn,
                     train_op,
                     cross_entropy_loss,
                     input_image,
                     correct_label,
                     keep_prob,
                     learning_rate,
                     train_writer,
                     merged,
                     logits=logits)

            # Save the model for future use
            # as_text = true will cause freeze_graph throw memory error
            tf.train.write_graph(sess.graph_def,
                                 './fcn8',
                                 'base_graph.pb',
                                 as_text=False)
            print("Model graph saved in path: ./fcn8/base_graph.pb")
            saver = tf.train.Saver()
            save_path = saver.save(sess, "./fcn8/ckpt")
            print("Model weights saved in path: %s" % save_path)

            t0 = time.time()
            # Save inference data using helper.save_inference_samples
            output_dir = helper.save_inference_samples(runs_dir, data_dir,
                                                       sess, image_shape,
                                                       logits, keep_prob,
                                                       input_image)
            duration = time.time() - t0
            print("Run complete, time taken = {0}".format(duration))

            helper.calculate_score(os.path.join(data_dir, 'Test', 'CameraSeg'),
                                   output_dir)

    elif mode == "test":
        if len(sys.argv) < 3:
            print("main.py test <graph location>")
        else:
            graph_file = sys.argv[2]
            use_xla = False

            config = tf.ConfigProto()
            if use_xla:
                jit_level = tf.OptimizerOptions.ON_1
                config.graph_options.optimizer_options.global_jit_level = jit_level

            with tf.Session(graph=tf.Graph(), config=config) as sess:
                gd = tf.GraphDef()
                g = sess.graph
                with tf.gfile.Open(graph_file, 'rb') as f:
                    data = f.read()
                    gd.ParseFromString(data)
                tf.import_graph_def(gd, name='')
                x = g.get_tensor_by_name('input_2:0')
                out = g.get_tensor_by_name('output_node0:0')

                t0 = time.time()
                # Save inference data using helper.save_inference_samples
                output_dir = helper.save_inference_samples_2(
                    runs_dir, data_dir, sess, image_shape, out, None, x)
                duration = time.time() - t0
                print("Run complete, time taken = {0}".format(duration))

                helper.calculate_score(
                    os.path.join(data_dir, 'Test', 'CameraSeg'), output_dir)
    else:
        print("Command unrecognized.")
Beispiel #29
0
        adam = Adam(lr=LEARNING_RATE)
        model.compile(loss='categorical_crossentropy',
                      optimizer=adam,
                      metrics=['accuracy'])

    model.fit(x, y, batch_size=BATCH_SIZE, epochs=EPOCHS)
    model.save('trained_model' + str(time.time()) + '.h5')

    # score = model.evaluate(x_test, y_test, batch_size=32)

    # features = model.predict(x)


if __name__ == "__main__":
    if len(sys.argv) == 2:
        if sys.argv[1] == '-e':
            model_filename = 'trained_model.h5'
            model_path = os.path.join('.', model_filename)
            helper.save_inference_samples(RUNS_DIRECTORY, DATA_DIRECTORY,
                                          IMAGE_SHAPE, model_path)
        else:
            print("continue traning...")
            model_filename = sys.argv[1]
            model_path = os.path.join('.', model_filename)
            if not os.path.exists(model_path):
                print("Model not found!")
            else:
                run(load_model(model_path))
    else:
        run()
Beispiel #30
0
def run():
    """
  Run main semantic segmentation program
  """

    print('\nStarting run...')
    args = parse_args()

    # Basic parameters
    kNumClasses = 2  # "road" or "not road"
    kImageShape = (160, 576)
    data_dir = './data'
    runs_dir = './runs'
    model_path = './duffnet/'
    model_name = 'duffnet'

    # Hyperparameters
    epochs = args.epochs
    batch_size = args.batch_size
    learning_rate = args.learn_rate

    # TensorFlow placeholders
    correct_label = tf.placeholder(tf.bool, [None, None, None, kNumClasses])

    # Check data set validity
    print('\nTesting Kitti dataset...')
    tests.test_for_kitti_dataset(data_dir)

    # Download pretrained VGG model if necessary
    helper.maybe_download_pretrained_vgg(data_dir)

    # Path to VGG model
    vgg_path = os.path.join(data_dir, 'vgg')
    data_folder = os.path.join(data_dir, 'data_road/training')

    # Create generator function to get batches for training
    get_batches_fn = helper.gen_batch_function(data_folder, kImageShape)

    # Start TensorFlow session
    with tf.Session() as sess:

        ### Train new network ###
        if args.mode == 0:

            # Build NN using load_vgg, layers, and optimize function
            img_input, keep_prob, vgg3, vgg4, vgg7 = load_vgg(sess, vgg_path)
            fcn8s_out = layers(vgg3, vgg4, vgg7, kNumClasses)
            logits, train_op, loss = optimize(fcn8s_out, correct_label,
                                              learning_rate, kNumClasses)

            # Train NN using the train_nn function
            train_nn(sess, epochs, batch_size, get_batches_fn, train_op, loss,
                     img_input, correct_label, keep_prob, learning_rate)

            # Save model result
            saver = tf.train.Saver()
            save_path = saver.save(sess, model_path + model_name)
            print("\nModel saved.")

        ### Test network ###
        elif args.mode == 1:

            # Load saved model
            saver = tf.train.import_meta_graph(model_path + model_name +
                                               '.meta')
            saver.restore(sess, tf.train.latest_checkpoint(model_path))
            graph = tf.get_default_graph()
            img_input = graph.get_tensor_by_name('image_input:0')
            keep_prob = graph.get_tensor_by_name('keep_prob:0')
            fcn8s_out = graph.get_tensor_by_name('fcn8s_out:0')
            logits = tf.reshape(fcn8s_out, (-1, kNumClasses))

            # Process test images
            helper.save_inference_samples(runs_dir, data_dir, sess,
                                          kImageShape, logits, keep_prob,
                                          img_input)

        ### Process video ###
        elif args.mode == 2:

            def process_frame(img):
                # Input image is a Numpy array, resize it to match NN input dimensions
                img_orig_size = (img.shape[0], img.shape[1])
                img_resized = scipy.misc.imresize(img, kImageShape)

                # Get NN tensors
                graph = tf.get_default_graph()
                img_input = graph.get_tensor_by_name('image_input:0')
                keep_prob = graph.get_tensor_by_name('keep_prob:0')
                fcn8s_out = graph.get_tensor_by_name('fcn8s_out:0')
                logits = tf.reshape(fcn8s_out, (-1, kNumClasses))

                # Process image with NN
                img_softmax = sess.run([tf.nn.softmax(logits)], {
                    keep_prob: 1.0,
                    img_input: [img_resized]
                })

                # Reshape to 2D image dimensions
                img_softmax = img_softmax[0][:, 1].reshape(
                    kImageShape[0], kImageShape[1])

                # Threshold softmax probability to a binary road judgement (>50%)
                segmentation = (img_softmax > 0.5).reshape(
                    kImageShape[0], kImageShape[1], 1)

                # Apply road judgement to original image as a mask with alpha = 50%
                mask = np.dot(segmentation, np.array([[0, 255, 0, 127]]))
                mask = scipy.misc.toimage(mask, mode="RGBA")
                street_img = Image.fromarray(img_resized)
                street_img.paste(mask, box=None, mask=mask)

                # Resize image back to original dimensions
                street_img_resized = scipy.misc.imresize(
                    street_img, img_orig_size)

                # Output image as a Numpy array
                img_out = np.array(street_img_resized)
                return img_out

            # Load saved model
            saver = tf.train.import_meta_graph(model_path + model_name +
                                               '.meta')
            saver.restore(sess, tf.train.latest_checkpoint(model_path))

            # Process video frames
            video_outfile = './video/project_video_out.mp4'
            video = VideoFileClip(
                './video/project_video.mp4')  #.subclip(37,38)
            video_out = video.fl_image(process_frame)
            video_out.write_videofile(video_outfile, audio=False)

        else:
            print('Error: Invalid mode selected.')
Beispiel #31
0
def run():
    num_classes = 2
    image_shape = (160, 576)
    data_dir = './data'
    runs_dir = './runs'
    tests.test_for_kitti_dataset(data_dir)

    # Download pretrained vgg model
    helper.maybe_download_pretrained_vgg(data_dir)

    # OPTIONAL: Train and Inference on the cityscapes dataset instead of the Kitti dataset.
    # You'll need a GPU with at least 10 teraFLOPS to train on.
    #  https://www.cityscapes-dataset.com/

    with tf.Session() as sess:
        # Path to vgg model
        vgg_path = os.path.join(data_dir, 'vgg')
        # Create function to get batches
        get_batches_fn = helper.gen_batch_function(os.path.join(data_dir, 'data_road/training'), image_shape)

        # OPTIONAL: Augment Images for better results
        #  https://datascience.stackexchange.com/questions/5224/how-to-prepare-augment-images-for-neural-network

        # TODO: Build NN using load_vgg, layers, and optimize function
        correct_label = tf.placeholder(tf.int32, [None, None, None, num_classes], name='correct_label')
        learning_rate = tf.placeholder(tf.float32, name='learning_rate')
        input_image, keep_prob, vgg_layer3_out, vgg_layer4_out, vgg_layer7_out = load_vgg(sess, vgg_path)
        nn_last_layer = layers(vgg_layer3_out, vgg_layer4_out, vgg_layer7_out, num_classes)
        logits, train_op, cross_entropy_loss = optimize(nn_last_layer, correct_label, learning_rate, num_classes)

        # TODO: Train NN using the train_nn function
        epochs = 1000
        batch_size = 20
        sess.run(tf.global_variables_initializer())
        sess.run(tf.local_variables_initializer())
        train_nn(sess, epochs, batch_size, get_batches_fn, train_op, cross_entropy_loss, input_image,
                 correct_label, keep_prob, learning_rate)

        # export the graph for inference programs
        output_node_names = 'adam_logit'
        output_graph_def = tf.graph_util.convert_variables_to_constants(
            sess,  # The session is used to retrieve the weights
            tf.get_default_graph().as_graph_def(),  # The graph_def is used to retrieve the nodes
            output_node_names.split(","))  # The output node names are used to select the usefull nodes
        print("output_node: {}".format(output_node_names.split(",")))
        saver = tf.train.Saver()
        saver.save(sess, runs_dir + '/fcn')
        # tf.train.write_graph(tf.get_default_graph().as_graph_def(), '', './runs/base_graph.pb', False)
        tf.train.write_graph(output_graph_def, '', runs_dir + '/frozen_graph.pb', False)

        # TODO: Save inference data using helper.save_inference_samples
        helper.save_inference_samples(runs_dir, data_dir, sess, image_shape, logits, keep_prob, input_image)

        # OPTIONAL: Apply the trained model to a video
        flist = [
            ['project_video.mp4', 'project_video_fcn8_100.mp4', (640, 360)]]

        for files in (flist):

            print('file: ' + files[0] + ' -> ' + files[1], flush=True)
            clip1 = VideoFileClip(files[0])

            save_size = files[2]

            fps = 30
            fourcc = cv2.VideoWriter_fourcc('M', 'P', '4', 'V')
            video_out = cv2.VideoWriter(files[1], int(fourcc), fps, save_size)

            frameno = 0
            for frame in clip1.iter_frames():
                frame = cv2.cvtColor(frame, cv2.COLOR_RGB2BGR)
                image = scipy.misc.imresize(frame, image_shape)

                im_softmax = sess.run([tf.nn.softmax(logits)],
                                      {keep_prob: 1.0, input_image: [image]})
                im_softmax = im_softmax[0][:, 1].reshape(image_shape[0], image_shape[1])
                segmentation = (im_softmax > 0.5).reshape(image_shape[0], image_shape[1], 1)
                mask = np.dot(segmentation, np.array([[0, 255, 0, 127]]))
                mask = scipy.misc.toimage(mask, mode="RGBA")
                street_im = scipy.misc.toimage(image)
                street_im.paste(mask, box=None, mask=mask)

                result = np.array(street_im)
                result2 = cv2.resize(result, (save_size[0], save_size[1]))
                video_out.write(result2)
 
                frameno += 1
                #if 3000 < frameno:
                #    break
                #cv2.imshow('fcn8s', result2)
                #if cv2.waitKey(1) & 0xFF == ord('q'):
                #    break

            video_out = None
Beispiel #32
0
def run():
    num_classes = 2
    image_shape = (160, 576)
    epochs = 40
    batch_size = 20
    data_dir = './data'
    runs_dir = './runs'
    ## Path to vgg model
    vgg_path = os.path.join(data_dir, 'vgg')
    tests.test_for_kitti_dataset(data_dir)

    ## Download pretrained vgg model
    helper.maybe_download_pretrained_vgg(data_dir)

    # Change the flag to True
    global save
    save = True

    ## OPTIONAL: Train and Inference on the cityscapes dataset instead of the Kitti dataset.
    ## You'll need a GPU with at least 10 teraFLOPS to train on.
    ##  https://www.cityscapes-dataset.com/

    with tf.Session() as sess:

        ## Create function to get batches
        print("Create function to get batches")
        get_batches_fn = helper.gen_batch_function(
            os.path.join(data_dir, 'data_road/training'), image_shape)

        ## OPTIONAL: Augment Images for better results
        ##  https://datascience.stackexchange.com/questions/5224/how-to-prepare-augment-images-for-neural-network

        ## TODO: Build NN using load_vgg, layers, and optimize function
        print("Loading the VGG16 model... ")
        vgg_input_tensor, vgg_keep_prob_tensor, vgg_layer3_out_tensor, vgg_layer4_out_tensor, vgg_layer7_out_tensor = load_vgg(
            sess, vgg_path)
        print("VGG16 model loaded !")

        print("Creating the layers ... ")
        deconv3 = layers(vgg_layer3_out_tensor, vgg_layer4_out_tensor,
                         vgg_layer7_out_tensor, num_classes)
        print("Layers created !")

        print(
            "Creating the placeholder for labels and variable for learning rate ..."
        )
        correct_label = tf.placeholder(dtype=tf.float32,
                                       shape=(None, None, None, num_classes))
        learning_rate = tf.placeholder(
            dtype=tf.float32)  # can not convert float to tensor error
        print("Placeholders created !")

        print(
            "Creating the logits, training operation and loss function for the network ..."
        )
        logits, train_op, cross_entropy_loss = optimize(
            deconv3, correct_label, learning_rate, num_classes)
        print("Logits, training operation and loss function created !")

        # TODO: Train NN using the train_nn function
        sess.run(tf.global_variables_initializer())
        print("Variables initialized !")

        # We will train if training flag is true or there is no checkpoint saved
        if training or not (os.path.exists('checkpoint')):
            print("\n ===================================================== ")
            print(" Training ....")
            train_nn(sess, epochs, batch_size, get_batches_fn, train_op,
                     cross_entropy_loss, vgg_input_tensor, correct_label,
                     vgg_keep_prob_tensor, learning_rate)
            print(" Training completed !")

            # TODO: Save inference data using helper.save_inference_samples
            #  helper.save_inference_samples(runs_dir, data_dir, sess, image_shape, logits, keep_prob, input_image)
            print("\n ===================================================== ")
            print(" Testing ....")
            helper.save_inference_samples(runs_dir, data_dir, sess,
                                          image_shape, logits,
                                          vgg_keep_prob_tensor,
                                          vgg_input_tensor)
        else:
            # TODO: Save inference data using helper.save_inference_samples
            #  helper.save_inference_samples(runs_dir, data_dir, sess, image_shape, logits, keep_prob, input_image)
            saver = tf.train.Saver()
            saver.restore(sess, tf.train.latest_checkpoint(''))
            print("\n ===================================================== ")
            print(" Testing ....")
            helper.save_inference_samples(runs_dir, data_dir, sess,
                                          image_shape, logits,
                                          vgg_keep_prob_tensor,
                                          vgg_input_tensor)
Beispiel #33
0
parser.add_argument('model', type=str, help='an integer for the accumulator')

args = parser.parse_args()

num_classes = 2
image_shape = (160, 576)  # KITTI dataset uses 160x576 images
data_dir = './data'
runs_dir = './runs'

vgg_path = os.path.join(data_dir, 'vgg')

# reset graph
tf.reset_default_graph()

with tf.Session() as sess:
    init_op = tf.initialize_all_variables()
    sess.run(init_op)

    # load model
    input_image, keep_prob, layer3, layer4, layer7 = load_vgg(sess, vgg_path)
    layer_output = layers(layer3, layer4, layer7, num_classes)
    logits = tf.reshape(layer_output, (-1, num_classes))

    # restore variables
    saver = tf.train.Saver()
    saver.restore(sess, args.model)

    print('inference on test images...')
    helper.save_inference_samples(runs_dir, data_dir, sess, image_shape,
                                  logits, keep_prob, input_image)
def run():
    num_classes = 2
    image_shape = (160, 576)
    data_dir = './data'
    runs_dir = './runs'
    tests.test_for_kitti_dataset(data_dir)

    # Download pretrained vgg model
    helper.maybe_download_pretrained_vgg(data_dir)

    # OPTIONAL: Train and Inference on the cityscapes dataset instead of the Kitti dataset.
    # You'll need a GPU with at least 10 teraFLOPS to train on.
    #  https://www.cityscapes-dataset.com/

    USE_GPU = True

    config = tf.ConfigProto(device_count={'GPU': 1 if USE_GPU else 0})

    with tf.Session(config=config) as sess:
        # Path to vgg model
        vgg_path = os.path.join(data_dir, 'vgg')

        # Create function to get batches
        get_batches_fn = helper.gen_batch_function(
            os.path.join(data_dir, 'data_road/training'), image_shape)

        # OPTIONAL: Augment Images for better results
        #  https://datascience.stackexchange.com/questions/5224/how-to-prepare-augment-images-for-neural-network

        # Building NN using load_vgg, layers, and optimize function

        correct_label = tf.placeholder(tf.float32)
        learning_rate = tf.placeholder(tf.float32)
        image_input, keep_prob, layer3_out, layer4_out, layer7_out = load_vgg(
            sess, os.path.join(data_dir, "vgg"))

        nn_last_layer = layers(layer3_out, layer4_out, layer7_out, num_classes)
        logits, train_op, cross_entropy_loss = optimize(
            nn_last_layer, correct_label, learning_rate, num_classes)

        # Training NN using the train_nn function

        # Epochs 20 = Average loss per image in epoch 20 has been: 0.1744

        epochs = 30
        batch_size = 1
        train_nn(sess, epochs, batch_size, get_batches_fn, train_op,
                 cross_entropy_loss, image_input, correct_label, keep_prob,
                 learning_rate)

        # Saving inference data using helper.save_inference_samples

        helper.save_inference_samples(runs_dir, data_dir, sess, image_shape,
                                      logits, keep_prob, image_input)

        # OPTIONAL: Applying the trained model to a video

        def process_videoimage(original_image,
                               sess=sess,
                               image_shape=image_shape,
                               logits=logits,
                               keep_prob=keep_prob,
                               image_input=image_input):
            original_image_shape = original_image.shape

            image = scipy.misc.imresize(original_image, image_shape)

            im_softmax = sess.run([tf.nn.softmax(logits)], {
                keep_prob: 1.0,
                image_input: [image]
            })
            im_softmax = im_softmax[0][:, 1].reshape(image_shape[0],
                                                     image_shape[1])
            segmentation = (im_softmax > 0.5).reshape(image_shape[0],
                                                      image_shape[1], 1)
            mask = np.dot(segmentation, np.array([[0, 255, 0, 127]]))
            mask = scipy.misc.toimage(mask, mode="RGBA")
            street_im = scipy.misc.toimage(image)
            street_im.paste(mask, box=None, mask=mask)

            return np.array(
                scipy.misc.imresize(street_im, original_image_shape))

        clip1 = VideoFileClip("./data/harder_challenge_video.mp4")
        white_clip = clip1.fl_image(
            process_videoimage)  # NOTE: this function expects color images!!
        white_clip.write_videofile("./data/segmented_project_video.mp4",
                                   audio=False)