Beispiel #1
0
            # Computing actions by using FDDR
            delta = fddr(fragments, running_mean=mean,
                         running_var=var).double().squeeze(-1)

            # Computing reward
            pad_delta = F.pad(delta, [1, 0])
            delta_diff = (pad_delta[:, 1:] - pad_delta[:, :-1])
            reward = torch.sum(delta * returns - c * torch.abs(delta_diff))

            # Updating FDDR
            optimizer.zero_grad()
            (-reward).backward()
            optimizer.step()

            # Recording and showing the information
            train_reward_meter.append(reward.item())
            progress_bar.set_description(
                '[Epoch %d][Iteration %d][Reward: train = %.4f]' %
                (e, i, train_reward_meter.get_average(-1)))
            progress_bar.update()

        fddr.eval()
        with torch.no_grad():
            for i, (returns, fragments, mean,
                    var) in enumerate(test_dataloader):
                # Computing actions by using FDDR
                delta = fddr(fragments, running_mean=mean,
                             running_var=var).double().squeeze(-1)

                # Computing reward
                pad_delta = F.pad(delta, [1, 0])
Beispiel #2
0
        for i, (returns, fragments) in enumerate(dataloader):
            # Computing actions by using FDDR
            delta = drl(fragments).double().squeeze(-1)

            # Computing reward
            pad_delta = F.pad(delta, [1, 0])
            delta_diff = (pad_delta[:, 1:] - pad_delta[:, :-1])
            reward = torch.sum(delta * returns - c * torch.abs(delta_diff))

            # Updating FDDR
            optimizer.zero_grad()
            (-reward).backward()
            optimizer.step()

            # Recording and showing the information
            reward_meter.append(reward.item())
            progress_bar.set_description(
                '[Epoch %d][Iteration %d][Reward: %.4f]' % (e, i, reward_meter.get_average(-1)))
            progress_bar.update()

        if e % save_per_epoch == 0:
            torch.save(drl.state_dict(), os.path.join(log_src, 'drl.pkl'))
        reward_meter.step()

# Save the model and reward history
torch.save(drl.state_dict(), os.path.join(log_src, 'drl.pkl'))
np.save(os.path.join(log_src, 'drl_reward.npy'), reward_meter.get_average())

# Plot the reward curve
plt.plot(reward_meter.get_average())
plt.show()