Beispiel #1
0
def eval_model_from_file():
    with open("../data/questions_refined.txt") as f:
        content = f.readlines()
    qs = [x1.strip() for x1 in content]
    with open("../data/answers_refined.txt") as f:
        content = f.readlines()
    anses = [x1.strip() for x1 in content]
    correct_fp = open("correct.txt", "w")
    wrong_fp = open("wrong.txt", "w")
    count1 = 0
    count2 = 0
    for z in range(0, len(qs)):
        print(z)
        inp = qs[z]
        try:
            with HiddenPrints():
                ans = word_prob_solver(inp)
            count2 += 1
            if str(ans) == anses[z]:
                count1 += 1
                correct_fp.write(str(inp) + "\n" + str(ans) + "\n\n")
            else:
                wrong_fp.write(str(inp) + "\n" + str(ans) + "\n\n")
        except Exception as e:
            count2 += 1
            wrong_fp.write(str(inp) + "\n" + str(e) + "\n\n")
    print("correct: ", str(count1))
    print("total: ", str(count2))
    print("acc: ", str((float(count1) * 100) / count2))
Beispiel #2
0
def testCombinationPOSAll(epsilon, X, Y, tag2index, postag2index,
                          emission_weight, transition_weight,
                          emission_weight_pos, combination_weight,
                          combination_weight_pos, param):
    T, POS = len(tag2index), len(postag2index)
    result_loss_dff_actual = np.zeros((T + 1, T, POS))
    result_loss_dff_predicted = np.zeros((T + 1, T, POS))
    with HiddenPrints():
        gradient = GradientCombinationPOS(X, Y, tag2index, postag2index,
                                          emission_weight, transition_weight,
                                          emission_weight_pos,
                                          combination_weight,
                                          combination_weight_pos, param)
        result_loss_dff_predicted = gradient * epsilon
        old_loss = Loss(X, Y, tag2index, emission_weight, transition_weight,
                        emission_weight_pos, combination_weight,
                        combination_weight_pos, param)
        for tag1, tag2, postag in itertools.product(range(T + 1), range(T),
                                                    range(POS)):
            combination_weight_pos[tag1, tag2, postag] += epsilon
            result_loss_dff_actual[tag1, tag2, postag] = Loss(
                X, Y, tag2index, emission_weight, transition_weight,
                emission_weight_pos, combination_weight,
                combination_weight_pos, param) - old_loss
            combination_weight_pos[tag1, tag2, postag] -= epsilon
        difference = np.abs(result_loss_dff_actual - result_loss_dff_predicted)
    print('********combination pos********')
    print('difference: {}, argmax: {}, max: {}'.format(
        difference,
        np.argpartition(difference, -10, axis=None)[-10:],
        np.partition(difference, -10, axis=None)[-10:]))
Beispiel #3
0
 def get_loss_grad(w):
     with HiddenPrints():
         transition_weight = w[:(T + 1) * (T + 1)].reshape((T + 1, T + 1))
         emission_weight = w[(T + 1) * (T + 1):].reshape((T, V))
         loss = Loss(train_X,
                     train_Y,
                     tag2index,
                     emission_weight,
                     transition_weight,
                     param=Lambda)
         grads_transition = GradientTransition(train_X,
                                               train_Y,
                                               tag2index,
                                               emission_weight,
                                               transition_weight,
                                               param=Lambda)
         grads_emission = GradientEmission(train_X,
                                           train_Y,
                                           tag2index,
                                           word2index,
                                           emission_weight,
                                           transition_weight,
                                           param=Lambda)
         grads = np.concatenate(
             (grads_transition.reshape(-1), grads_emission.reshape(-1)))
     return loss, grads
Beispiel #4
0
def testEmissionAll(epsilon, X, Y, tag2index, word2index, emission_weight,
                    transition_weight, emission_weight_pos, combination_weight,
                    combination_weight_pos, param):
    T, V = len(tag2index), len(word2index)
    result_loss_dff_actual = np.zeros((T, V))
    result_loss_dff_predicted = np.zeros((T, V))
    with HiddenPrints():
        gradient = GradientEmission(X, Y, tag2index, word2index,
                                    emission_weight, transition_weight,
                                    emission_weight_pos, combination_weight,
                                    combination_weight_pos, param)
        result_loss_dff_predicted = gradient * epsilon
        old_loss = Loss(X, Y, tag2index, emission_weight, transition_weight,
                        emission_weight_pos, combination_weight,
                        combination_weight_pos, param)
        for tag, word in itertools.product(range(T), range(V)):
            emission_weight[tag, word] += epsilon
            result_loss_dff_actual[tag, word] = Loss(
                X, Y, tag2index, emission_weight, transition_weight,
                emission_weight_pos, combination_weight,
                combination_weight_pos, param) - old_loss
            emission_weight[tag, word] -= epsilon
        difference = np.abs(result_loss_dff_actual - result_loss_dff_predicted)
    print('********emission********')
    print('difference: {}, argmax: {}, max: {}'.format(
        difference,
        np.argpartition(difference, -10, axis=None)[-10:],
        np.partition(difference, -10, axis=None)[-10:]))
Beispiel #5
0
def testTransitionAll(epsilon, X, Y, tag2index, emission_weight,
                      transition_weight, emission_weight_pos,
                      combination_weight, combination_weight_pos, param):
    T = len(tag2index)
    result_loss_dff_actual = np.zeros((T + 1, T + 1))
    result_loss_dff_predicted = np.zeros((T + 1, T + 1))
    with HiddenPrints():
        gradient = GradientTransition(X, Y, tag2index, emission_weight,
                                      transition_weight, emission_weight_pos,
                                      combination_weight,
                                      combination_weight_pos, param)
        result_loss_dff_predicted = gradient * epsilon
        old_loss = Loss(X, Y, tag2index, emission_weight, transition_weight,
                        emission_weight_pos, combination_weight,
                        combination_weight_pos, param)
        for tag1, tag2 in itertools.product(range(-1, T), range(-1, T)):
            transition_weight[tag1, tag2] += epsilon
            result_loss_dff_actual[tag1, tag2] = Loss(
                X, Y, tag2index, emission_weight, transition_weight,
                emission_weight_pos, combination_weight,
                combination_weight_pos, param) - old_loss
            transition_weight[tag1, tag2] -= epsilon
        difference = np.abs(result_loss_dff_actual - result_loss_dff_predicted)
    print('********transition********')
    print('difference: {}, argmax: {}, max: {}'.format(difference,
                                                       np.argmax(difference),
                                                       np.max(difference)))
def trainDecay(X,
               Y,
               X_dev,
               Y_dev_raw,
               tag2index,
               word2index,
               postag2index,
               link_weight_sum,
               iteration=20,
               random_seed=1):

    T, V, POS, D = len(tag2index), len(word2index), len(postag2index), len(X)
    f1_opti, counter = 0, 1
    transition_weight, emission_weight, emission_weight_pos, combination_weight, combination_weight_pos = np.zeros(
        (T + 1, T + 1)), np.zeros((T, V)), np.zeros((T, POS)), np.zeros(
            (T + 1, T, V)), np.zeros((T + 1, T, POS))
    np.random.seed(random_seed)

    for i in range(iteration):
        for j in range(D):
            k = random.randint(0, D - 1)
            x, y = X[k], Y[k]
            transition_count, emission_count, emission_count_pos, combination_count, combination_count_pos = feature_count(
                x, y, tag2index, word2index, postag2index)
            y_pred = viterbi(x, tag2index, emission_weight, transition_weight,
                             emission_weight_pos, combination_weight,
                             combination_weight_pos, link_weight_sum)
            transition_count_pred, emission_count_pred, emission_count_pos_pred, combination_count_pred, combination_count_pos_pred = feature_count(
                x, y_pred, tag2index, word2index, postag2index)
            transition_weight += (transition_count -
                                  transition_count_pred) * 1 / counter
            emission_weight += (emission_count -
                                emission_count_pred) * 1 / counter
            emission_weight_pos += (emission_count_pos -
                                    emission_count_pos_pred) * 1 / counter
            combination_weight += (combination_count -
                                   combination_count_pred) * 1 / counter
            combination_weight_pos += (
                combination_count_pos -
                combination_count_pos_pred) * 1 / counter
        loss = Loss(X, Y, tag2index, word2index, postag2index,
                    transition_weight, emission_weight, emission_weight_pos,
                    combination_weight, combination_weight_pos,
                    link_weight_sum)
        with HiddenPrints():
            prec, rec, f1 = eval(X_dev, Y_dev_raw, tag2index, emission_weight,
                                 transition_weight, emission_weight_pos,
                                 combination_weight, combination_weight_pos,
                                 link_weight_sum)
        print(
            'training epoch: {} , training loss: {:.4f} dev F1: {:.4f}'.format(
                i + 1, loss, f1))
        counter += 1
        if f1 > f1_opti:
            transition_weight_opti, emission_weight_opti, emission_weight_pos_opti, combination_weight_opti, combination_weight_pos_opti, f1_opti = transition_weight.copy(
            ), emission_weight.copy(), emission_weight_pos.copy(
            ), combination_weight.copy(), combination_weight_pos.copy(), f1
            print('better parameters found!')

    return transition_weight_opti, emission_weight_opti, emission_weight_pos_opti, combination_weight_opti, combination_weight_pos_opti
def resolve_corefs(text):
    print("resolving pronoun co-refs...")
    document = nlp(text)
    with HiddenPrints():
        coref = Coref()
    context = ""
    for sentence in document:
        # print(str(sentence))
        if "they " in str(sentence):
            context += " " + str(sentence).strip()
            continue
        clusters = coref.one_shot_coref(utterances=str(sentence).strip(),
                                        context=context)
        resolved_utterance_text = coref.get_resolved_utterances()
        # print(resolved_utterance_text)
        context += " ".join(resolved_utterance_text).strip()
    return context
def train(X,
          Y,
          X_test,
          Y_test_raw,
          tag2index,
          word2index,
          iteration=20,
          random_seed=1):

    T, V, D = len(tag2index), len(word2index), len(X)
    f1_opti = 0
    transition_weight, emission_weight = np.zeros((T + 1, T + 1)), np.zeros(
        (T, V))
    np.random.seed(random_seed)

    for i in range(iteration):
        for j in range(D):
            k = random.randint(0, D - 1)
            x, y = X[k], Y[k]
            transition_count, emission_count = feature_count(
                x, y, tag2index, word2index)
            y_pred = viterbi(x, tag2index, emission_weight, transition_weight,
                             link_weight_sum)
            transition_count_pred, emission_count_pred = feature_count(
                x, y_pred, tag2index, word2index)
            transition_weight += (transition_count - transition_count_pred)
            emission_weight += (emission_count - emission_count_pred)
        loss = Loss(X, Y, tag2index, word2index, transition_weight,
                    emission_weight, link_weight_sum)
        with HiddenPrints():
            prec, rec, f1 = eval(X_test, Y_test_raw, tag2index,
                                 emission_weight, transition_weight,
                                 link_weight_sum)
        print('training epoch: {} , training loss: {:.4f} test F1: {:.4f}'.
              format(i + 1, loss, f1))
        if f1 > f1_opti:
            transition_weight_opti, emission_weight_opti, f1_opti = transition_weight, emission_weight, f1
            print('better parameters found!')

    return transition_weight_opti, emission_weight_opti
Beispiel #9
0
 def get_loss_grad(w):
     with HiddenPrints():
         transition_weight = w[:(T + 1) * (T + 1)].reshape((T + 1, T + 1))
         emission_weight = w[(T + 1) * (T + 1):(T + 1) * (T + 1) +
                             T * V].reshape((T, V))
         emission_weight_pos = w[(T + 1) * (T + 1) + T * V:(T + 1) *
                                 (T + 1) + T * (V + POS)].reshape((T, POS))
         combination_weight = w[(T + 1) * (T + 1) + T * (V + POS):(T + 1) *
                                (T + 1) + T * (V + POS) +
                                (T + 1) * T * V].reshape((T + 1, T, V))
         combination_weight_pos = w[(T + 1) * (T + 1) + T * (V + POS) +
                                    (T + 1) * T * V:].reshape(
                                        (T + 1, T, POS))
         loss = Loss(train_X,
                     train_Y,
                     tag2index,
                     emission_weight,
                     transition_weight,
                     emission_weight_pos,
                     combination_weight,
                     combination_weight_pos,
                     param=Lambda)
         grads_transition = GradientTransition(train_X,
                                               train_Y,
                                               tag2index,
                                               emission_weight,
                                               transition_weight,
                                               emission_weight_pos,
                                               combination_weight,
                                               combination_weight_pos,
                                               param=Lambda)
         grads_emission = GradientEmission(train_X,
                                           train_Y,
                                           tag2index,
                                           word2index,
                                           emission_weight,
                                           transition_weight,
                                           emission_weight_pos,
                                           combination_weight,
                                           combination_weight_pos,
                                           param=Lambda)
         grads_emission_pos = GradientEmissionPOS(train_X,
                                                  train_Y,
                                                  tag2index,
                                                  postag2index,
                                                  emission_weight,
                                                  transition_weight,
                                                  emission_weight_pos,
                                                  combination_weight,
                                                  combination_weight_pos,
                                                  param=Lambda)
         grads_combination = GradientCombination(train_X,
                                                 train_Y,
                                                 tag2index,
                                                 word2index,
                                                 emission_weight,
                                                 transition_weight,
                                                 emission_weight_pos,
                                                 combination_weight,
                                                 combination_weight_pos,
                                                 param=Lambda)
         grads_combination_pos = GradientCombinationPOS(
             train_X,
             train_Y,
             tag2index,
             postag2index,
             emission_weight,
             transition_weight,
             emission_weight_pos,
             combination_weight,
             combination_weight_pos,
             param=Lambda)
         grads = np.concatenate(
             (grads_transition.reshape(-1), grads_emission.reshape(-1),
              grads_emission_pos.reshape(-1), grads_combination.reshape(-1),
              grads_combination_pos.reshape(-1)))
     return loss, grads