def backbone_pointnet2(self, X_pc, is_train=None):
		import helper_pointnet2 as pnet2
		points_num = tf.shape(X_pc)[1]
		l0_xyz = X_pc[:,:,0:3]
		l0_points = X_pc[:,:,3:9]

		l1_xyz, l1_points, l1_indices = pnet2.pointnet_sa_module(l0_xyz, l0_points, npoint=1024, radius=0.1, nsample=32,
			mlp=[32, 32, 64], mlp2=None, group_all=False, is_training=None, bn_decay=None, scope='layer1')
		l2_xyz, l2_points, l2_indices = pnet2.pointnet_sa_module(l1_xyz, l1_points, npoint=256, radius=0.2, nsample=64,
			mlp=[64, 64, 128], mlp2=None, group_all=False, is_training=None, bn_decay=None, scope='layer2')
		l3_xyz, l3_points, l3_indices = pnet2.pointnet_sa_module(l2_xyz, l2_points, npoint=64, radius=0.4, nsample=128,
		    mlp=[128, 128, 256], mlp2=None, group_all=False, is_training=None, bn_decay=None, scope='layer3')
		l4_xyz, l4_points, l4_indices = pnet2.pointnet_sa_module(l3_xyz, l3_points, npoint=None, radius=None, nsample=None,
			mlp=[256, 256, 512], mlp2=None, group_all=True, is_training=None, bn_decay=None, scope='layer4')

		# Feature Propagation layers
		l3_points = pnet2.pointnet_fp_module(l3_xyz, l4_xyz, l3_points, l4_points, [256, 256], is_training=None, bn_decay=None, scope='fa_layer1')
		l2_points = pnet2.pointnet_fp_module(l2_xyz, l3_xyz, l2_points, l3_points, [256, 256], is_training=None, bn_decay=None,scope='fa_layer2')
		l1_points = pnet2.pointnet_fp_module(l1_xyz, l2_xyz, l1_points, l2_points, [256, 128], is_training=None, bn_decay=None,scope='fa_layer3')
		l0_points = pnet2.pointnet_fp_module(l0_xyz, l1_xyz, tf.concat([l0_xyz, l0_points], axis=-1),
		            l1_points,[128, 128, 128, 128], is_training=None, bn_decay=None, scope='fa_layer4')
		global_features = tf.reshape(l4_points, [-1, 512])
		point_features = l0_points

		# sem
		l0_points = l0_points[:,:,None,:]
		sem1 = Ops.xxlu(Ops.conv2d(l0_points, k=(1, 1), out_c=128, str=1, pad='VALID', name='sem1'), label='lrelu')
		sem2 = Ops.xxlu(Ops.conv2d(sem1, k=(1, 1), out_c=64, str=1, pad='VALID', name='sem2'), label='lrelu')
		sem2 = Ops.dropout(sem2, keep_prob=0.5, is_train=is_train, name='sem2_dropout')
		sem3 = Ops.conv2d(sem2, k=(1, 1), out_c=self.sem_num, str=1, pad='VALID', name='sem3')
		sem3 = tf.reshape(sem3, [-1, points_num, self.sem_num])
		self.y_psem_logits = sem3
		y_sem_pred = tf.nn.softmax(self.y_psem_logits, name='y_sem_pred')

		return point_features, global_features, y_sem_pred
	def backbone_pointnet(self, X_pc, is_train):
		[_, _, points_cc] = X_pc.get_shape()
		points_num = tf.shape(X_pc)[1]
		X_pc = tf.reshape(X_pc, [-1, points_num, int(points_cc), 1])

		l1 = Ops.xxlu(Ops.conv2d(X_pc, k=(1, points_cc), out_c=64, str=1, pad='VALID', name='l1'), label='lrelu')
		l2 = Ops.xxlu(Ops.conv2d(l1, k=(1, 1), out_c=64, str=1, pad='VALID', name='l2'), label='lrelu')
		l3 = Ops.xxlu(Ops.conv2d(l2, k=(1, 1), out_c=64, str=1, pad='VALID', name='l3'), label='lrelu')
		l4 = Ops.xxlu(Ops.conv2d(l3, k=(1, 1), out_c=128, str=1, pad='VALID', name='l4'), label='lrelu')
		l5 = Ops.xxlu(Ops.conv2d(l4, k=(1, 1), out_c=1024, str=1, pad='VALID', name='l5'), label='lrelu')
		global_features = tf.reduce_max(l5, axis=1, name='maxpool')
		global_features = tf.reshape(global_features, [-1, int(l5.shape[-1])])
		point_features = tf.reshape(l5, [-1, points_num, int(l5.shape[-1])])

		####  sem
		g1 = Ops.xxlu(Ops.fc(global_features, out_d=256, name='semg1'), label='lrelu')
		g2 = Ops.xxlu(Ops.fc(g1, out_d=128, name='semg2'), label='lrelu')
		sem1 = tf.tile(g2[:,None,None,:], [1, points_num, 1, 1])
		sem1 = tf.concat([l5, sem1], axis=-1)
		sem1 = Ops.xxlu(Ops.conv2d(sem1, k=(1,1), out_c=512, str=1, pad='VALID', name='sem1'), label='lrelu')
		sem2 = Ops.xxlu(Ops.conv2d(sem1, k=(1, 1), out_c=256, str=1, pad='VALID', name='sem2'), label='lrelu')
		sem3 = Ops.xxlu(Ops.conv2d(sem2, k=(1, 1), out_c=128, str=1, pad='VALID', name='sem3'), label='lrelu')
		sem3 = Ops.dropout(sem3, keep_prob=0.5, is_train=is_train, name='sem3_dropout')
		sem4 = Ops.conv2d(sem3, k=(1, 1), out_c=self.sem_num, str=1, pad='VALID', name='sem4')
		sem4 = tf.reshape(sem4, [-1, points_num, self.sem_num])
		self.y_psem_logits = sem4
		y_sem_pred = tf.nn.softmax(self.y_psem_logits, name='y_sem_pred')

		return point_features, global_features, y_sem_pred
	def pmask_net(self, point_features, global_features, bbox, bboxscore):
		p_f_num = int(point_features.shape[-1])
		p_num = tf.shape(point_features)[1]
		bb_num = int(bbox.shape[1])

		global_features = tf.tile(Ops.xxlu(Ops.fc(global_features, out_d=256, name='down_g1'), label='lrelu')[:,None,None,:], [1, p_num, 1, 1])
		point_features = Ops.xxlu(Ops.conv2d(point_features[:,:,:,None],k=(1, p_f_num), out_c=256, str=1,name='down_p1',pad='VALID'), label='lrelu')
		point_features = tf.concat([point_features, global_features], axis=-1)
		point_features = Ops.xxlu(Ops.conv2d(point_features, k=(1,int(point_features.shape[-2])), out_c=128, str=1, pad='VALID', name='down_p2'), label='lrelu')
		point_features = Ops.xxlu(Ops.conv2d(point_features, k=(1, int(point_features.shape[-2])), out_c=128, str=1, pad='VALID',name='down_p3'), label='lrelu')
		point_features = tf.squeeze(point_features, axis=-2)

		bbox_info = tf.tile(tf.concat([tf.reshape(bbox, [-1, bb_num, 6]), bboxscore[:,:,None]],axis=-1)[:,:,None,:], [1,1,p_num,1])
		pmask0 = tf.tile(point_features[:,None,:,:], [1, bb_num, 1, 1])
		pmask0 = tf.concat([pmask0, bbox_info], axis=-1)
		pmask0 = tf.reshape(pmask0, [-1, p_num, int(pmask0.shape[-1]), 1])

		pmask1 = Ops.xxlu(Ops.conv2d(pmask0, k=(1,int(pmask0.shape[-2])), out_c=64, str=1, pad='VALID', name='pmask1'), label='lrelu')
		pmask2 = Ops.xxlu(Ops.conv2d(pmask1, k=(1, 1), out_c=32, str=1, pad='VALID', name='pmask2'),label='lrelu')
		pmask3 = Ops.conv2d(pmask2, k=(1,1), out_c=1, str=1, pad='VALID', name='pmask3')
		pmask3 = tf.reshape(pmask3, [-1, bb_num, p_num])

		y_pmask_logits = pmask3
		y_pmask_pred = tf.nn.sigmoid(y_pmask_logits, name='y_pmask_pred')

		return y_pmask_pred
Beispiel #4
0
def pointnet_fp_module(xyz1,
                       xyz2,
                       points1,
                       points2,
                       mlp,
                       is_training,
                       bn_decay,
                       scope,
                       bn=True):
    ''' PointNet Feature Propogation (FP) Module
        Input:                                                                                                      
            xyz1: (batch_size, ndataset1, 3) TF tensor                                                              
            xyz2: (batch_size, ndataset2, 3) TF tensor, sparser than xyz1                                           
            points1: (batch_size, ndataset1, nchannel1) TF tensor                                                   
            points2: (batch_size, ndataset2, nchannel2) TF tensor
            mlp: list of int32 -- output size for MLP on each point                                                 
        Return:
            new_points: (batch_size, ndataset1, mlp[-1]) TF tensor
    '''
    with tf.variable_scope(scope) as sc:
        dist, idx = three_nn(xyz1, xyz2)
        dist = tf.maximum(dist, 1e-10)
        norm = tf.reduce_sum((1.0 / dist), axis=2, keep_dims=True)
        norm = tf.tile(norm, [1, 1, 3])
        weight = (1.0 / dist) / norm
        interpolated_points = three_interpolate(points2, idx, weight)

        if points1 is not None:
            new_points1 = tf.concat(
                axis=2, values=[interpolated_points,
                                points1])  # B,ndataset1,nchannel1+nchannel2
        else:
            new_points1 = interpolated_points
        new_points1 = tf.expand_dims(new_points1, 2)
        for i, num_out_channel in enumerate(mlp):
            ####################################
            new_points1 = Ops.xxlu(Ops.conv2d(new_points1,
                                              k=(1, 1),
                                              out_c=num_out_channel,
                                              str=1,
                                              pad='VALID',
                                              name='llll' + str(i)),
                                   label='lrelu')
            #new_points1 = tf_util.conv2d(new_points1, num_out_channel, [1,1],padding='VALID', stride=[1,1],
            #    bn=bn, is_training=is_training,scope='conv_%d'%(i), bn_decay=bn_decay)

        new_points1 = tf.squeeze(new_points1, [2])  # B,ndataset1,mlp[-1]
        return new_points1
Beispiel #5
0
def pointnet_sa_module_msg(xyz,
                           points,
                           npoint,
                           radius_list,
                           nsample_list,
                           mlp_list,
                           is_training,
                           bn_decay,
                           scope,
                           bn=True,
                           use_xyz=True,
                           use_nchw=False):
    ''' PointNet Set Abstraction (SA) module with Multi-Scale Grouping (MSG)
        Input:
            xyz: (batch_size, ndataset, 3) TF tensor
            points: (batch_size, ndataset, channel) TF tensor
            npoint: int32 -- #points sampled in farthest point sampling
            radius: list of float32 -- search radius in local region
            nsample: list of int32 -- how many points in each local region
            mlp: list of list of int32 -- output size for MLP on each point
            use_xyz: bool, if True concat XYZ with local point features, otherwise just use point features
            use_nchw: bool, if True, use NCHW data format for conv2d, which is usually faster than NHWC format
        Return:
            new_xyz: (batch_size, npoint, 3) TF tensor
            new_points: (batch_size, npoint, \sum_k{mlp[k][-1]}) TF tensor
    '''
    data_format = 'NCHW' if use_nchw else 'NHWC'
    with tf.variable_scope(scope) as sc:
        new_xyz = gather_point(xyz, farthest_point_sample(npoint, xyz))
        new_points_list = []
        for i in range(len(radius_list)):
            radius = radius_list[i]
            nsample = nsample_list[i]
            idx, pts_cnt = query_ball_point(radius, nsample, xyz, new_xyz)
            grouped_xyz = group_point(xyz, idx)
            grouped_xyz -= tf.tile(tf.expand_dims(new_xyz, 2),
                                   [1, 1, nsample, 1])
            if points is not None:
                grouped_points = group_point(points, idx)
                if use_xyz:
                    grouped_points = tf.concat([grouped_points, grouped_xyz],
                                               axis=-1)
            else:
                grouped_points = grouped_xyz
            if use_nchw:
                grouped_points = tf.transpose(grouped_points, [0, 3, 1, 2])
            for j, num_out_channel in enumerate(mlp_list[i]):
                ####################################
                grouped_points = Ops.xxlu(Ops.conv2d(grouped_points,
                                                     k=(1, 1),
                                                     out_c=num_out_channel,
                                                     str=1,
                                                     pad='VALID',
                                                     name='lll' + str(i)),
                                          label='lrelu')
                #grouped_points = tf_util.conv2d(grouped_points, num_out_channel, [1,1],
                #padding='VALID', stride=[1,1], bn=bn, is_training=is_training,scope='conv%d_%d'%(i,j), bn_decay=bn_decay)

            if use_nchw:
                grouped_points = tf.transpose(grouped_points, [0, 2, 3, 1])
            new_points = tf.reduce_max(grouped_points, axis=[2])
            new_points_list.append(new_points)
        new_points_concat = tf.concat(new_points_list, axis=-1)
        return new_xyz, new_points_concat
Beispiel #6
0
def pointnet_sa_module(xyz,
                       points,
                       npoint,
                       radius,
                       nsample,
                       mlp,
                       mlp2,
                       group_all,
                       is_training,
                       bn_decay,
                       scope,
                       bn=True,
                       pooling='max',
                       knn=False,
                       use_xyz=True,
                       use_nchw=False):
    ''' PointNet Set Abstraction (SA) Module
        Input:
            xyz: (batch_size, ndataset, 3) TF tensor
            points: (batch_size, ndataset, channel) TF tensor
            npoint: int32 -- #points sampled in farthest point sampling
            radius: float32 -- search radius in local region
            nsample: int32 -- how many points in each local region
            mlp: list of int32 -- output size for MLP on each point
            mlp2: list of int32 -- output size for MLP on each region
            group_all: bool -- group all points into one PC if set true, OVERRIDE
                npoint, radius and nsample settings
            use_xyz: bool, if True concat XYZ with local point features, otherwise just use point features
            use_nchw: bool, if True, use NCHW data format for conv2d, which is usually faster than NHWC format
        Return:
            new_xyz: (batch_size, npoint, 3) TF tensor
            new_points: (batch_size, npoint, mlp[-1] or mlp2[-1]) TF tensor
            idx: (batch_size, npoint, nsample) int32 -- indices for local regions
    '''
    data_format = 'NCHW' if use_nchw else 'NHWC'
    with tf.variable_scope(scope) as sc:
        # Sample and Grouping
        if group_all:
            nsample = xyz.get_shape()[1].value
            new_xyz, new_points, idx, grouped_xyz = sample_and_group_all(
                xyz, points, use_xyz)
        else:
            new_xyz, new_points, idx, grouped_xyz = sample_and_group(
                npoint, radius, nsample, xyz, points, knn, use_xyz)

        # Point Feature Embedding
        if use_nchw: new_points = tf.transpose(new_points, [0, 3, 1, 2])
        for i, num_out_channel in enumerate(mlp):
            ####################################
            new_points = Ops.xxlu(Ops.conv2d(new_points,
                                             k=(1, 1),
                                             out_c=num_out_channel,
                                             str=1,
                                             pad='VALID',
                                             name='l' + str(i)),
                                  label='lrelu')
            #new_points = tf_util.conv2d(new_points, num_out_channel, [1,1],padding='VALID', stride=[1,1],
            #        bn=bn, is_training=is_training, scope='conv%d'%(i), bn_decay=bn_decay, data_format=data_format)

        if use_nchw: new_points = tf.transpose(new_points, [0, 2, 3, 1])

        # Pooling in Local Regions
        if pooling == 'max':
            new_points = tf.reduce_max(new_points,
                                       axis=[2],
                                       keep_dims=True,
                                       name='maxpool')
        elif pooling == 'avg':
            new_points = tf.reduce_mean(new_points,
                                        axis=[2],
                                        keep_dims=True,
                                        name='avgpool')
        elif pooling == 'weighted_avg':
            with tf.variable_scope('weighted_avg'):
                dists = tf.norm(grouped_xyz, axis=-1, ord=2, keep_dims=True)
                exp_dists = tf.exp(-dists * 5)
                weights = exp_dists / tf.reduce_sum(
                    exp_dists, axis=2,
                    keep_dims=True)  # (batch_size, npoint, nsample, 1)
                new_points *= weights  # (batch_size, npoint, nsample, mlp[-1])
                new_points = tf.reduce_sum(new_points, axis=2, keep_dims=True)
        elif pooling == 'max_and_avg':
            max_points = tf.reduce_max(new_points,
                                       axis=[2],
                                       keep_dims=True,
                                       name='maxpool')
            avg_points = tf.reduce_mean(new_points,
                                        axis=[2],
                                        keep_dims=True,
                                        name='avgpool')
            new_points = tf.concat([avg_points, max_points], axis=-1)

        # [Optional] Further Processing
        if mlp2 is not None:
            if use_nchw: new_points = tf.transpose(new_points, [0, 3, 1, 2])
            for i, num_out_channel in enumerate(mlp2):
                ####################################
                new_points = Ops.xxlu(Ops.conv2d(new_points,
                                                 k=(1, 1),
                                                 out_c=num_out_channel,
                                                 str=1,
                                                 pad='VALID',
                                                 name='ll' + str(i)),
                                      label='lrelu')
                #new_points = tf_util.conv2d(new_points, num_out_channel, [1,1], padding='VALID', stride=[1,1],
                #bn=bn, is_training=is_training, scope='conv_post_%d'%(i), bn_decay=bn_decay,data_format=data_format)

            if use_nchw: new_points = tf.transpose(new_points, [0, 2, 3, 1])

        new_points = tf.squeeze(new_points,
                                [2])  # (batch_size, npoints, mlp2[-1])
        return new_xyz, new_points, idx