Beispiel #1
0
def findFX(df):

    df[['nativebalance','USbalance','CAbalance']] = np.cumsum(df.groupby(['Owner','Currency'])[['Native Amount','USD Amount','CAD Amount']])
    ### total of (all transactions in native currency multiplied by transaction date rate)

    df['USDbalance'] = df.apply(lambda row: convert(row['nativebalance'], row['Currency'], row['Rate']), axis=1)
    df['CADbalance'] = df['USDbalance'] * df['Rate']
    ## total of all transactions in native currency converted at ending rate

    df['USFX'] = df.USDbalance - df.USbalance
    df['CADFX'] = df.CADbalance - df.CAbalance

    df = df[['transdate','Owner','Currency','USFX','CADFX']]

    df['transdate'] = pd.DatetimeIndex(df['transdate'])
    df['PrevDate'] = pd.DatetimeIndex(df['transdate']) + pd.offsets.MonthEnd(-1)


    df.iloc[0:4,3:5] = 0.0 ### change first three balances to zero. Needed for pad filling step below.

    df = df.sort(['Owner','Currency','transdate','PrevDate']).fillna(method='pad')
    df = pd.merge(df, df, how='left', left_on=['PrevDate','Owner','Currency'], right_on=['transdate','Owner','Currency'])

    df['FXUSD'] = df.USFX_x - df.USFX_y
    df['FXCAD'] = df.CADFX_x - df.CADFX_y
    df = df[['transdate_x','Owner','Currency','FXUSD','FXCAD']]
    df = df.sort(['Owner','Currency','transdate_x']).fillna(method='pad')

    df['Category'] = "FX Gain/Loss"
    df.columns = ['Date','Owner','Currency','USD Amount','CAD Amount','Category']
    df = df.groupby(['Date','Owner','Category'])['USD Amount','CAD Amount'].sum().reset_index()

    return df
Beispiel #2
0
def totalbalances():
    ### inserts daily balance data for all accounts to database

    from datetime import datetime

    a = sqlqueries.sqltotalbalances() ### bankaccounts, transactions, dates, fxrates

    df = pd.read_sql(a, engine, parse_dates='transdate')

    df['amount'] = df['amount'].fillna(0)
    df['balance'] = np.cumsum(df.groupby(['AccountName'])['amount'])    # adds column of running total balances
    df = df[df['balance'] != 0 ]    # removes zero balances which should be balances before account started
    df = df.sort('transdate')
    df = df[df['transdate'] <= datetime.today()]    # removes any future dates

    df['USDAmount'] = df.apply(lambda row: convert(row['balance'],row['Currency'],row['Rate']), axis=1)
    df['CADAmount'] = df.USDAmount * df.Rate

    df.balance = df.balance.round(2)
    df.USDAmount = df.USDAmount.round(2)
    df.CADAmount = df.CADAmount.round(2)

    df.to_sql('balances', engine, if_exists = 'replace', index=False)