Beispiel #1
0
def analyze_outs(predict, labels, label_names, frame_thresh=0.7, dist_threshold=10):
    # next apply non max suppression
    # labels = labels[0]
    num_labels = labels.shape[1]

    all_matches = []
    for i in range(num_labels):
        ground_truth = labels[:, i]
        gt_sup, gt_idx = post_processing.nonmax_suppress(
            ground_truth, frame_thresh)
        predict_sup, predict_idx = post_processing.nonmax_suppress(
            predict[:, i], frame_thresh)
        match_dict, dist_mat = hungarian_matching.apply_hungarian(
            gt_idx, predict_idx, dist_threshold=dist_threshold
        )
        match_dict["tps"] = len(match_dict["tps"])
        match_dict["fps"] = len(match_dict["fps"])

        # # write processed file
        # output_name = os.path.join(
        #     out_dir, exp_names[0], 'processed_%s.csv' % label_names[i]
        # )
        # create_proc_file(output_name, gt_sup, predict_sup, match_dict)
        all_matches.append(match_dict)
    return all_matches
Beispiel #2
0
def analyze_outs(predict, labels, label_names, frame_thresh=0.7):
    # next apply non max suppression
    # labels = labels[0]
    num_labels = labels.shape[1]

    all_dists = {
        'lift': [],
        'hand': [],
        'grab': [],
        'supinate': [],
        'mouth': [],
        'chew': []
    }
    dist_keys = label_names
    all_matches = []
    for i in range(num_labels):
        ground_truth = labels[:, i]
        gt_sup, gt_idx = post_processing.nonmax_suppress(
            ground_truth, frame_thresh)
        predict_sup, predict_idx = post_processing.nonmax_suppress(
            predict[:, i], frame_thresh)
        match_dict, dist_mat = hungarian_matching.apply_hungarian(
            gt_idx, predict_idx
        )
        # predict_idx = match_dict["tps"]
        predict_idx = match_dict["fps"]
        # setup "greedy matching" to make a list of distances for each prediction.
        dist_mat = numpy.zeros((len(gt_idx), len(predict_idx)))
        abs_dist_mat = numpy.zeros((len(gt_idx), len(predict_idx)))
        for j in range(len(gt_idx)):
            for k in range(len(predict_idx)):
                # dist_mat[j, k] = predict_idx[k][1] - gt_idx[j]
                # abs_dist_mat[j, k] = abs(predict_idx[k][1] - gt_idx[j])

                dist_mat[j, k] = predict_idx[k] - gt_idx[j]
                abs_dist_mat[j, k] = abs(predict_idx[k] - gt_idx[j])
        # get the min idx for each column (each prediction).
        min_dists = []
        if len(gt_idx) > 0 and len(predict_idx) > 0:
            min_idx = numpy.argmin(abs_dist_mat, axis=0)

            for j in range(len(predict_idx)):
                min_dists.append(dist_mat[min_idx[j], j])
            all_dists[dist_keys[i]] += min_dists
        # if len(gt_idx) > 1 and len(predict_idx) > 1:
        #     import pdb; pdb.set_trace()
        # match_dict, dist_mat = hungarian_matching.apply_hungarian(
        #     gt_idx, predict_idx
        # )
        # if len(match_dict["tps"]) > 0:
        #     import pdb; pdb.set_trace()
        # match_dict["tps"] = len(match_dict["tps"])
        # match_dict["fps"] = len(match_dict["fps"])
        # # write processed file
        # output_name = os.path.join(
        #     out_dir, exp_names[0], 'processed_%s.csv' % label_names[i]
        # )
        # create_proc_file(output_name, gt_sup, predict_sup, match_dict)
        # all_matches.append(dist_mat)
    return all_dists
Beispiel #3
0
def eval_scores(scores, score_thresh=0.7, dist_thresh=30.0):
    gt_sup, gt_idx = post_processing.nonmax_suppress(scores[:, 1],
                                                     score_thresh)
    predict_sup, predict_idx = post_processing.nonmax_suppress(
        scores[:, 0], score_thresh)

    # go through each prediction and see if it is a false positive or true
    # positive.
    predicts = predict_sup[predict_idx]
    is_tp = numpy.zeros(predicts.shape)
    is_gt = numpy.zeros(predicts.shape)
    match_dict, dist_mat = hungarian_matching.apply_hungarian(
        gt_idx,
        predict_idx,
        val_threshold=score_thresh,
        dist_threshold=dist_thresh)

    for j in range(len(predict_idx)):
        for i in range(len(gt_idx)):
            # check if in the right range?
            # dist mat is buffered by dummy nodes (of the number of gt's)
            if numpy.argmin(dist_mat[:, j + len(gt_idx)]) < dist_thresh:
                # is this prediction the lowest score for any gt?
                dists = dist_mat[i, :]
                if numpy.argmin(dists) == j + len(gt_idx):
                    is_tp[j] = dists[j + len(gt_idx)]
                    is_gt[j] = True
                    # no reason to check for other matches
                    break

    return predicts, is_tp, is_gt, len(gt_idx)
def analyze_outs(csv_dir, predict, labels, label_names, frame_thresh=0.1):
    # next apply non max suppression
    # labels = labels[0]
    num_labels = labels.shape[1]

    # create a mask for the network predictions.
    # apply an argmax to figure out which locations the network was most sure
    # that a behavior has occured
    predict_mask = numpy.zeros(predict.shape)
    predict_max_idx = numpy.argmax(predict, axis=1)
    for i in range(len(predict_max_idx)):
        # "i" should be the row.
        j = predict_max_idx[i]
        predict_mask[i, j] = 1

    # next convert the mask into predictions using the rules described by
    # startnet/odas paper.
    # c_t = argmax is an action.
    # c_t != c_{t-1}
    # as_t^{c_t} exceeds a threshold. This isn't available for odas.
    # set the previous behavior to background
    c_tminus1 = 6
    predict_starts = numpy.zeros(predict.shape)
    for i in range(predict_mask.shape[0]):
        c_t = predict_max_idx[i]
        if c_t != 6 and c_t != c_tminus1:
            predict_starts[i, c_t] = 1
        c_tminus1 = c_t

    # write predictions back to disk
    # copy the templates
    for label_name in label_names:
        csv_name = "odas_" + label_name + ".csv"
        base_out = csv_dir
        sequences_helper.create_html_file(base_out, csv_name, "movie_comb.avi",
                                          30)
        # write the predictions.
    exp_name = os.path.basename(base_out)
    write_csvs(base_out, exp_name, label_names, labels, predict_starts)

    all_matches = []
    for i in range(num_labels):
        ground_truth = labels[:, i]
        gt_sup, gt_idx = post_processing.nonmax_suppress(
            ground_truth, frame_thresh)
        predict_sup, predict_idx = post_processing.nonmax_suppress(
            predict[:, i], frame_thresh)
        match_dict, dist_mat = hungarian_matching.apply_hungarian(
            gt_idx, predict_idx)
        match_dict["tps"] = len(match_dict["tps"])
        match_dict["fps"] = len(match_dict["fps"])
        # # write processed file
        # output_name = os.path.join(
        #     out_dir, exp_names[0], 'processed_%s.csv' % label_names[i]
        # )
        # create_proc_file(output_name, gt_sup, predict_sup, match_dict)
        all_matches.append(match_dict)
    return all_matches
def eval_scores(scores, score_thresh=0.7, dist_thresh=30.0):
    gt_sup, gt_idx = post_processing.nonmax_suppress(scores[:, 1],
                                                     score_thresh)
    predict_sup, predict_idx = post_processing.nonmax_suppress(
        scores[:, 0], score_thresh)

    # go through each prediction and see if it is a false positive or true
    # positive.
    predicts = predict_sup[predict_idx]
    is_tp = numpy.zeros(predicts.shape)
    is_gt = numpy.zeros(predicts.shape)
    match_dict, dist_mat = hungarian_matching.apply_hungarian(
        gt_idx,
        predict_idx,
        val_threshold=score_thresh,
        dist_threshold=dist_thresh)

    # # loop over the predictions, and create a is_tp_fp indicator
    # for i in range(len(match_dict["tps"])):
    #     # second element is the prediction index
    #     is_tp[match_dict["tps"][i][1]] = 1
    # is_tp = is_tp[predict_idx]

    # for i in range(len(match_dict["fps"])):
    #     # second element is the prediction index
    #     is_tp[match_dict["tps"][i][1]] = 1
    #     # try:
    #     #     is_tp[match_dict["tps"][i][1] == numpy.asarray(predict_idx)] = 1
    #     # except:
    #     #     import pdb; pdb.set_trace()

    for j in range(len(predict_idx)):
        for i in range(len(gt_idx)):
            # check if in the right range?
            # dist mat is buffered by dummy nodes (of the number of gt's)
            if numpy.argmin(dist_mat[:, j + len(gt_idx)]) < dist_thresh:
                # is this prediction the lowest score for any gt?
                dists = dist_mat[i, :]
                if numpy.argmin(dists) == j + len(gt_idx):
                    is_tp[j] = dists[j + len(gt_idx)]
                    is_gt[j] = True
                    # no reason to check for other matches
                    break
            # else:
            #     is_tp[j] = -1
            #     import pdb; pdb.set_trace()
    # if len(gt_idx) > 2:
    #     import pdb; pdb.set_trace()
    return predicts, is_tp, is_gt, len(gt_idx)
Beispiel #6
0
def analyze_outs(out_dir, exp_names, predict, labels, frame_thresh=0.7):
    # next apply non max suppression
    labels = labels[0]
    num_labels = labels.shape[2]

    all_matches = []
    for i in range(num_labels):
        ground_truth = labels[:, 0, i]
        gt_sup, gt_idx = post_processing.nonmax_suppress(
            ground_truth, frame_thresh)
        predict_sup, predict_idx = post_processing.nonmax_suppress(
            predict[:, 0, i], frame_thresh)
        match_dict, dist_mat = hungarian_matching.apply_hungarian(
            gt_idx, predict_idx)

        # write processed file
        output_name = os.path.join(out_dir, exp_names[0].decode("utf-8"),
                                   'processed_%s.csv' % g_label_names[i])
        create_proc_file(output_name, gt_sup, predict_sup, match_dict)
        all_matches.append(match_dict)
        # import pdb; pdb.set_trace()
    return all_matches
def proc_prediction_file(predict_file):
    """proc_prediction

    Process a single prediction file. Given a csv output of the form
    frame num, prediction, ground truth.
    """
    # Post processing flow:
    #  nonmax suppress
    #  Apply hungarian matching
    #  Compute stats.
    csv_data = post_processing.load_predict_csv(predict_file)
    # always assume there is a ground truth key name, and skip anything called
    # frames
    key_names = csv_data.keys()

    # get the values out of the dictionary
    ground_truth = []
    predict = []
    for key in key_names:
        if "ground truth" in key:
            ground_truth = csv_data[key]
        elif "frame" not in key:
            predict = csv_data[key]

    # next apply non max suppression
    gt_sup, gt_idx = post_processing.nonmax_suppress(ground_truth, 0.7)
    predict_sup, predict_idx = post_processing.nonmax_suppress(predict, 0.7)

    # hungarian matching
    match_dict, dist_mat = hungarian_matching.apply_hungarian(
        gt_idx, predict_idx
    )

    # create the post processed file
    output_name = predict_file.replace("predict_", "processed_")
    create_proc_file(output_name, gt_sup, predict_sup, match_dict)

    return match_dict
def process_csv(filename):
    values = []
    with open(filename, "r") as fid:
        # first line is header
        line = fid.readline().strip()
        line = fid.readline()
        while line:
            # csv, want columns 2 and 3.
            scores = line.split(',')[:3]
            scores = [float(scores[0]), float(scores[1]), float(scores[2])]
            values.append(scores)
            line = fid.readline()

    values = numpy.asarray(values)
    frame_thresh = 0.7
    gt_sup, gt_idx = post_processing.nonmax_suppress(values[:, 2],
                                                     frame_thresh)
    predict_sup, predict_idx = post_processing.nonmax_suppress(
        values[:, 1], frame_thresh)

    values = numpy.stack([values[:, 0], predict_sup, gt_sup]).T

    return values
def create_match_array(opts, net_out, org_labels, label_weight):
    """Create the match array."""
    val_threshold = 0.7
    # frame_threshold = [5, 15, 15, 20, 30, 30]
    frame_threshold = [10, 10, 10, 10, 10, 10]
    # frame_threshold = 10
    y_org = org_labels

    COST_FP = 20
    # COST_FN = 20
    net_out = net_out.data.cpu().numpy()
    num_frames, num_vids, num_classes = net_out.shape
    TP_weight = np.zeros((num_frames, num_vids, num_classes), dtype="float32")
    FP_weight = np.zeros((num_frames, num_vids, num_classes), dtype="float32")
    num_false_neg = []
    num_false_pos = []
    for i in range(num_vids):
        temp_false_neg = 0
        temp_false_pos = 0
        for j in range(num_classes):
            processed, max_vals = post_processing.nonmax_suppress(
                net_out[:, i, j], val_threshold)
            processed = processed.reshape((processed.shape[0], 1))
            data = np.zeros((len(processed), 3), dtype="float32")
            data[:, 0] = list(range(len(processed)))
            data[:, 1] = processed[:, 0]
            data[:, 2] = y_org[:, i, j]
            # if opts["flags"].debug is True:
            #     import pdb; pdb.set_trace()
            # after suppression, apply hungarian.
            labelled = np.argwhere(y_org[:, i, j] == 1)
            labelled = labelled.flatten().tolist()
            num_labelled = len(labelled)
            dist_mat = post_processing.create_frame_dists(
                data, max_vals, labelled)
            rows, cols, dist_mat = post_processing.apply_hungarian(
                dist_mat, frame_threshold[j])

            # missed classifications
            # false_neg = len(labelled) - len(
            #     [k for k in range(len(max_vals)) if cols[k] < len(labelled)])
            # num_false_neg += false_neg
            # temp_false_neg += false_neg

            num_matched = 0
            for pos in range(len(max_vals)):
                ref_idx = max_vals[pos]
                # if cols[pos] < len(labelled):
                row_idx = rows[pos]
                col_idx = cols[pos]
                if col_idx < len(labelled) and\
                        dist_mat[row_idx, col_idx] < frame_threshold[j]:
                    # True positive
                    label_idx = labelled[cols[pos]]
                    TP_weight[ref_idx, i, j] = np.abs(ref_idx - label_idx)
                    # import pdb; pdb.set_trace()
                    # if we are reweighting based off label rariety
                    if opts["flags"].reweight is True:
                        TP_weight[ref_idx, i, j] =\
                            TP_weight[ref_idx, i, j] * label_weight[j]
                    num_matched += 1
                else:
                    # False positive
                    FP_weight[ref_idx, i, j] = COST_FP
                    if opts["flags"].reweight is True:
                        FP_weight[ref_idx, i, j] =\
                            FP_weight[ref_idx, i, j] * label_weight[j]
                    temp_false_pos += 1

            temp_false_neg += num_labelled - num_matched
        num_false_neg.append(temp_false_neg)
        num_false_pos.append(temp_false_pos)

    num_false_neg = np.asarray(num_false_neg).astype("float32")
    return TP_weight, FP_weight, num_false_neg, num_false_pos