Beispiel #1
0
def main(params):

    set_seeds(params.seed)
    shared_params = ("ffnn", "nn", params, gen_ffnn, flop_realnn)

    if params.search:
        network_depth = len([
            int(layer) for layer in params.ffnn_struct.split("-")
            if layer.isdigit()
        ])

        if params.search_width:
            for n_hidden in range(params.min_width, params.max_width + 1,
                                  params.step_width):
                params.ffnn_struct = (network_depth *
                                      (str(n_hidden) + "-"))[:-1]
                print("NETWORK STRUCTURE:", params.ffnn_struct)
                parameter_search_parallel(*shared_params,
                                          wrapper_train_parallel)

        else:
            print("NETWORK STRUCTURE:", params.ffnn_struct)
            parameter_search_parallel(*shared_params, wrapper_train_parallel)

    else:
        print("NETWORK STRUCTURE:", params.ffnn_struct)
        train_func = wrapper_train_parallel if params.mp else train
        single_run(*shared_params, train_func)
Beispiel #2
0
def train(params, batch_size, learning_rate, x_train, x_test, y_train, y_test, seed):
    """Training loop for the real-valued recurrent neural-network.
    """

    set_seeds(seed)

    if params.search or params.mp:
        verbosity = 0
    else:
        verbosity = 1

    model = gen_rnn(params, batch_size, learning_rate)

    # Information on distribution of |r(n)|^2, mean and variance
    train_loss_list = np.zeros(params.n_epochs) # Normal loss is just MEAN squared of residuals
    train_var_list  = np.zeros(params.n_epochs) # Variance of the |r(n)|^2 values

    test_loss_list = np.zeros(params.n_epochs)
    test_var_list  = np.zeros(params.n_epochs)

    # Restructure input to match batch_size (required for a statefull network)
    if params.rnn_stateful:
        x_train = x_train[: x_train.shape[0] - (x_train.shape[0]) % batch_size]
        y_train = y_train[: y_train.shape[0] - (y_train.shape[0]) % batch_size]

    history = model.fit(
        x_train,
        np.hstack((y_train.real, y_train.imag)),
        epochs          = params.n_epochs,
        batch_size      = batch_size,
        verbose         = verbosity,
        validation_data = (x_test, np.hstack((y_test.real, y_test.imag))),
    )

    # Compensate for the additional counts performed for mean when split to real and imag
    # That is, mean is computed for array of size 2N so reduced too much
    train_loss_list = 2 * np.array(history.history["loss"])
    test_loss_list  = 2 * np.array(history.history["val_loss"])

    if not params.search and not params.mp:
        print("Train Loss", train_loss_list[-1])
        print("Test Loss", test_loss_list[-1])
        print()

    if not os.path.exists("tmp_models"):
        os.makedirs("tmp_models")

    path = "tmp_models" + os.sep + str(uuid.uuid4().hex)
    model.save_weights(path, save_format="tf")

    result_dict = {
        "train_loss": train_loss_list,
        "train_var": train_var_list,
        "test_loss": test_loss_list,
        "test_var": test_var_list,
        "model": path,
    }

    return result_dict
Beispiel #3
0
def main(params):

    set_seeds(params.seed)
    shared_params = ("model_based_nn", "model_based_nn", params,
                     gen_model_based_nn, flop_model_based_nn)
    print("NETWORK STRUCTURE:", params.htnn_struct)

    if params.search:
        if params.search_width:
            for max_power in range(params.min_width, params.max_width + 1,
                                   params.step_width):
                print("Max Power", max_power)
                params.max_power = max_power
                parameter_search_parallel(*shared_params,
                                          wrapper_train_parallel)
        else:
            parameter_search_parallel(*shared_params, wrapper_train_parallel)
    else:
        train_func = wrapper_train_parallel if params.mp else train
        single_run(*shared_params, train_func)
Beispiel #4
0
def parameter_search_parallel(name, model_type, params, model_func, flop_func,
                              train_func):
    """Perform the parameter search in parallel by constructing all parameter
    points and seeds as a set of tasks.

    Parameters
    ----------
    name        : str
        Name of the model (model_based_nn, complex_rnn, rnn, complex_ffnn, ffnn).
    model_type  : str
        Type of model (nn, model_based_nn).
    params      : :obj:
        Parameters.
    model_func  : :obj:
        Model generator function
    flop_func   : :obj:
        Function to calculate FLOPs for model.
    train_func  : :obj:
        Model training function.
    """

    if model_type not in ["nn", "model_based_nn"]:
        raise ValueError("Specified model_type of model is incorrect")

    x_train, y_train, y_train_orig, x_test, y_test, y_test_orig, y_var, h_lin, y_canc_train, y_canc_test, noise, measured_noise_power = initialize(
        params)

    canc_lin = 10 * np.log10(
        np.mean(np.abs(y_test_orig)**2) /
        np.mean(np.abs(y_test_orig - y_canc_test)**2))

    # If cross-validation, generate array for the folds
    if params.cv:
        x_train_cv, y_train_cv, x_val_cv, y_val_cv = gen_cv_data(
            params, x_train, y_train)
        seed_list = gen_seeds(params.seed, params.n_cv_seeds)

        # Swap to use fewer epochs
        n_epochs = params.n_epochs
        params.n_epochs = params.n_cv_epochs

    else:
        seed_list = gen_seeds(params.seed, params.n_seeds)

    # Generate all the tasks
    tasks = []
    batch_size_list = []
    learning_rate_list = []

    if params.cv:
        print("PARAMETER SEARCH USING CV STARTING")
    else:
        print("PARAMETER SEARCH STARTING")

    set_seeds(params.seed)
    batch_size_list = np.random.randint(low=params.min_batch_size,
                                        high=params.max_batch_size,
                                        size=params.n_search_points)

    set_seeds(params.seed)
    learning_rate_list = np.random.uniform(low=params.min_learning_rate,
                                           high=params.max_learning_rate,
                                           size=params.n_search_points)

    for point in range(0, params.n_search_points):
        if params.cv:
            for fold in range(0, params.cv_folds):
                for seed in seed_list:
                    tasks.append((params, batch_size_list[point],
                                  learning_rate_list[point], x_train_cv[fold],
                                  x_val_cv[fold], y_train_cv[fold],
                                  y_val_cv[fold], seed))
        else:
            for seed in seed_list:
                tasks.append(
                    (params, batch_size_list[point], learning_rate_list[point],
                     x_train, x_test, y_train, y_test, seed))

    result_array = parallel_train(params, tasks, train_func)

    # Get the mean test loss across multiple seeds to determine best hyperparameter
    test_loss_array = gen_array(result_array, "test_loss")

    if params.cv:
        test_loss_array = np.reshape(test_loss_array,
                                     (params.n_search_points, params.cv_folds,
                                      params.n_cv_seeds, params.n_epochs))

        results_last = test_loss_array[...,
                                       -1]  # All results but only last epoch
        results_last = np.mean(
            results_last, axis=-1)  # Mean across CV seeds for final epochs
        results_last = np.mean(results_last,
                               axis=-1)  # Mean across folds for final epochs

        # Find the optimal points in the parameter space based on minimum loss
        opt_point_idx = np.nanargmin(results_last)

        params.batch_size = batch_size_list[opt_point_idx]
        params.learning_rate = learning_rate_list[opt_point_idx]

        params.n_epochs = n_epochs

        print("CROSS-VALIDATION COMPLETE: PARAMETERS FOUND")
        print("\tBatch-Size", params.batch_size)
        print("\tLearning-Rate", params.learning_rate)
        print()

        if params.search_training_size:

            training_sizes = np.arange(
                params.min_training_size, params.max_training_size +
                params.step_training_size, params.step_training_size) / 100

            print("Training set sizes", training_sizes)

            for training_size in training_sizes:
                params.training_size = training_size

                # Rerun with these optimal parameters and other amount of seeds
                single_run(name, model_type, params, model_func, flop_func,
                           train_func)

        else:
            # Rerun with these optimal parameters and other amount of seeds
            single_run(name, model_type, params, model_func, flop_func,
                       train_func)

    else:
        test_loss_array = np.reshape(
            test_loss_array,
            (params.n_search_points, params.n_seeds, params.n_epochs))

        results_last_epoch = test_loss_array[
            ..., -1]  # All results but only last epoch
        results_avg = np.mean(
            results_last_epoch,
            axis=-1)  # Mean across seeds for final epochs for each parameter

        # Find the optimal points in the parameter space based on minimum loss
        opt_point_idx = np.nanargmin(results_avg)
        opt_seed_idx = np.nanargmin(results_last_epoch[opt_point_idx], axis=-1)

        params.batch_size = batch_size_list[opt_point_idx]
        params.learning_rate = learning_rate_list[opt_point_idx]

        print("PARAMETER SEARCH COMPLETE: PARAMETERS FOUND")
        print("\tBatch-Size", params.batch_size)
        print("\tLearning-Rate", params.learning_rate)
        print()

        # Get results and parameters for optimal result
        result_array = np.reshape(result_array,
                                  (params.n_search_points, params.n_seeds))
        result_array = result_array[opt_point_idx]

        train_dict = gen_stat(gen_array(result_array, "train_loss"),
                              gen_array(result_array, "train_var"), y_train,
                              seed_list)

        test_dict = gen_stat(gen_array(result_array, "test_loss"),
                             gen_array(result_array, "test_var"), y_test,
                             seed_list)

        model_path = result_array[opt_seed_idx]["model"]
        model = gen_model(params, name)

        model.load_weights(model_path)
        y_hat = model(x_test)

        if model_type == "nn":
            save_data_nn(name, params, model, model_path, flop_func,
                         train_dict, test_dict, canc_lin, seed_list)
        else:
            K1_array = gen_array(result_array, "K1")
            K2_array = gen_array(result_array, "K2")
            weights_array = gen_array(result_array, "weights")

            save_data_model_based_nn(name, params, model, model_path,
                                     flop_func, train_dict, test_dict,
                                     canc_lin, seed_list, K1_array, K2_array,
                                     weights_array)

        # Remove dir
        try:
            shutil.rmtree("tmp_models")
        except OSError as e:
            print("Error: %s - %s." % (e.filename, e.strerror))
Beispiel #5
0
def train(params, batch_size, learning_rate, x_train, x_test, y_train, y_test,
          seed):
    """Training loop for the complex-valued feed-forward neural-network.
    """

    set_seeds(seed)

    optimizer = select_optimizer(params)
    model = gen_complex_ffnn(params)
    f_train = tf.function(step)
    n_batches = x_train.shape[0] // batch_size

    # Information on distribution of |r(n)|^2, mean and variance
    train_loss_list = np.zeros(
        params.n_epochs)  # Normal loss is just MEAN squared of residuals
    train_var_list = np.zeros(
        params.n_epochs)  # Variance of the |r(n)|^2 values

    test_loss_list = np.zeros(params.n_epochs)
    test_var_list = np.zeros(params.n_epochs)

    for epoch in range(0, params.n_epochs):
        train_loss = 0

        for batch in range(0, n_batches):

            first_index = batch * batch_size
            second_index = first_index + batch_size

            input = x_train[first_index:second_index]
            target = y_train[first_index:second_index]

            loss = f_train(model, optimizer, params.gradient_clipping, input,
                           target)

            train_loss += loss

        test_out = model(x_test)
        test_loss = complex_mean_squared_error(y_test, test_out)

        train_loss /= n_batches

        train_loss_list[epoch] = train_loss
        test_loss_list[epoch] = test_loss

        train_var_list[epoch] = np.var(
            np.abs(y_train - model(x_train).numpy())**2)
        test_var_list[epoch] = np.var(np.abs(y_test - test_out.numpy())**2)

        if not params.search and not params.mp:
            print("Epoch", epoch + 1)
            print("Train Loss", train_loss_list[epoch])
            print("Test Loss", test_loss_list[epoch])
            print()

    if not params.search and not params.mp:
        print("Train Loss", train_loss_list[-1])
        print("Test Loss", test_loss_list[-1])
        print()

    if not os.path.exists("tmp_models"):
        os.makedirs("tmp_models")

    path = "tmp_models" + os.sep + str(uuid.uuid4().hex)
    model.save_weights(path, save_format="tf")

    result_dict = {
        "train_loss": train_loss_list,
        "train_var": train_var_list,
        "test_loss": test_loss_list,
        "test_var": test_var_list,
        "model": path,
    }

    return result_dict
Beispiel #6
0
def train(params, batch_size, learning_rate, x_train, x_test, y_train, y_test,
          seed):
    """Training loop for the complex-valued model-based neural-network.
    """

    set_seeds(seed)

    network_array = params.htnn_struct.split("-")
    network_array = [layer for layer in network_array if layer != "-"]

    optimizer = select_optimizer(params)
    model = gen_model_based_nn(params)
    f_train = tf.function(step)
    n_batches = x_train.shape[0] // batch_size

    # Information on distribution of |r(n)|^2, mean and variance
    train_loss_list = np.zeros(
        params.n_epochs)  # Normal loss is just MEAN squared of residuals
    train_var_list = np.zeros(
        params.n_epochs)  # Variance of the |r(n)|^2 values

    test_loss_list = np.zeros(params.n_epochs)
    test_var_list = np.zeros(params.n_epochs)

    for epoch in range(0, params.n_epochs):
        train_loss = 0

        for batch in range(0, n_batches):

            first_index = batch * batch_size
            second_index = first_index + batch_size

            input = x_train[first_index:second_index]
            target = y_train[first_index:second_index]

            loss = f_train(model, optimizer, params.gradient_clipping_param1,
                           params.gradient_clipping_param2,
                           params.gradient_clipping, network_array, input,
                           target)

            train_loss += loss

        test_out = model(x_test)
        test_loss = complex_mean_squared_error(y_test, test_out)

        train_loss /= n_batches

        train_loss_list[epoch] = train_loss
        test_loss_list[epoch] = test_loss

        train_var_list[epoch] = np.var(
            np.abs(y_train - model(x_train).numpy())**2)
        test_var_list[epoch] = np.var(np.abs(y_test - test_out.numpy())**2)

        if not params.search and not params.mp:
            print("Epoch", epoch + 1)
            print("Train Loss", train_loss_list[epoch])
            print("Test Loss", test_loss_list[epoch])
            print("Test output variance", np.var(test_out.numpy()))
            print("Test output mean", np.mean(test_out.numpy()))
            print()

    if True in np.isnan(test_loss_list):
        print("Warning: NaNs present in loss")

    if not os.path.exists("tmp_models"):
        os.makedirs("tmp_models")

    path = "tmp_models" + os.sep + str(uuid.uuid4().hex)
    model.save_weights(path, save_format="tf")

    for layer in model.layers:
        if layer.__class__.__name__ == "IQMixer":

            if network_array[0] == "T1":
                K1_real = np.cos(layer.phase.numpy())
                K1_imag = layer.gain.numpy() * np.sin(layer.phase.numpy())
                K1 = K1_real + 1j * K1_imag

                K2_real = layer.gain.numpy() * np.cos(layer.phase.numpy())
                K2_imag = -np.sin(layer.phase.numpy())
                K2 = K2_real + 1j * K2_imag

            elif network_array[0] == "T2":
                K1_real = np.cos(layer.phase.numpy())
                K1_imag = -layer.gain.numpy() * np.sin(layer.phase.numpy())
                K1 = K1_real + 1j * K1_imag

                K2_real = layer.gain.numpy() * np.cos(layer.phase.numpy())
                K2_imag = -np.sin(layer.phase.numpy())
                K2 = K2_real + 1j * K2_imag

            elif network_array[0] == "E":
                K1_real = (
                    1 + layer.gain.numpy() * np.cos(layer.phase.numpy())) / 2
                K1_imag = (layer.gain.numpy() *
                           np.sin(layer.phase.numpy())) / 2
                K1 = K1_real + 1j * K1_imag

                K2_real = (
                    1 - layer.gain.numpy() * np.cos(layer.phase.numpy())) / 2
                K2_imag = -(layer.gain.numpy() *
                            np.sin(layer.phase.numpy())) / 2
                K2 = K2_real + 1j * K2_imag

            elif network_array[0] == "C" or network_array[0] == "R":
                K1_real = layer.K1_real.numpy()
                K1_imag = layer.K1_imag.numpy()
                K1 = K1_real + 1j * K1_imag

                K2_real = layer.K2_real.numpy()
                K2_imag = layer.K2_imag.numpy()
                K2 = K2_real + 1j * K2_imag

        if layer.__class__.__name__ == "Hammerstein":

            weights_real = layer.kernel_real.numpy()
            weights_imag = layer.kernel_imag.numpy()

            weights = weights_real + 1j * weights_imag

        if network_array[0] == "B":
            K1 = np.array([1.0])
            K2 = np.array([0.0])

    result_dict = {
        "train_loss": train_loss_list,
        "train_var": train_var_list,
        "test_loss": test_loss_list,
        "test_var": test_var_list,
        "model": path,
        "K1": K1,
        "K2": K2,
        "weights": weights,
    }

    return result_dict