Beispiel #1
0
    def simulate(self, BS=True):
        if BS:

            def logPsi(xp, x):
                return np.sum(C1 * (xp == x).astype(float), axis=1)

            C1 = 0.5

            w = np.zeros(self.N)
            logW = np.zeros(self.N)
            Xout = np.zeros((self.I, self.J), dtype=bool)

            b = hlp.discreteSampling(np.ones(self.N), np.arange(self.N), 1)
            Xout[:, -1] = self.X[b, :, -1]
            for j in np.arange(self.J - 1)[::-1]:
                logW = logPsi(Xout[:, j + 1], self.X[:, :, j])
                maxLogW = np.max(logW)
                w = np.exp(logW - maxLogW)
                b = hlp.discreteSampling(w, np.arange(self.N), 1)
                Xout[:, j] = self.X[b, :, j]

            return Xout
        else:
            b = hlp.discreteSampling(np.ones(self.N), np.arange(self.N), M)
            return self.X[b, :, :]
Beispiel #2
0
    def simulate(self, M, BS=True):
        r"""Simulate properly weighted sample.
        
        Parameters
        ----------
        BS : bool
            Sample using backward simulation.
            
        Returns
        -------
        Xout : 1-D array_like
            Simulated trajectory.
        """
        if BS:
			def logPsi(xp,x): return -0.5*self.params.tauPsi*(xp-x)**2
			w = np.zeros( self.N )
			logW = np.zeros( self.N )
			Xout = np.zeros( (M, self.d) )
			
			b = hlp.discreteSampling(np.ones(self.N),np.arange(self.N),M)
			Xout[:,-1] = self.X[b,-1]
			for i in np.arange(self.d-1)[::-1]:
				for j in np.arange(M):
					logW = logPsi(Xout[j,i+1],self.X[:,i])
					maxLogW = np.max(logW)
					w = np.exp(logW - maxLogW)
					b = hlp.discreteSampling(w, np.arange(self.N), 1)
					Xout[j,i] = self.X[b,i]
			
			return Xout
        else:
			b = hlp.discreteSampling(np.ones(self.N),np.arange(self.N),M)
			return self.Xa[b,:]
    def simulate(self, BS=True):
        """Simulate properly weighted sample.
        
        Parameters
        ----------
        BS : bool
            Sample using backward simulation.
            
        Returns
        -------
        Xout : 2-D array_like
            Simulated trajectory.
        """
        if BS:
			C1 = 0.5
			def logPsi(xp,x): return np.sum(C1*(x==xp).astype(float))
			
			w = np.zeros( self.N )
			logW = np.zeros( self.N )
			Xout = np.zeros( (self.I, self.J), dtype=bool )
			
			b = hlp.discreteSampling(np.ones(self.N),np.arange(self.N),1)
			Xout[:,-1] = self.X[b,:,-1]
			for i in np.arange(self.J-1)[::-1]:
				logW = logPsi(Xout[:,i+1],self.X[:,:,i])
				maxLogW = np.max(logW)
				w = np.exp(logW - maxLogW)
				b = hlp.discreteSampling(w, np.arange(self.N), 1)
				Xout[:,i] = self.X[b,:,i]
			
			return Xout
        else:
			b = hlp.discreteSampling(np.ones(self.N),np.arange(self.N),M)
			return self.X[b,:,:]
Beispiel #4
0
    def simulate(self, BS=True):
        if BS:

            def logPsi(xp, x):
                return np.sum(C1 * (xp == x).astype(float), axis=1)

            C1 = 0.5

            w = np.zeros(self.N)
            logW = np.zeros(self.N)
            Xout = np.zeros((self.I, self.J), dtype=bool)

            b = hlp.discreteSampling(np.ones(self.N), np.arange(self.N), 1)
            Xout[:, -1] = self.X[b, :, -1]
            for j in np.arange(self.J - 1)[::-1]:
                logW = logPsi(Xout[:, j + 1], self.X[:, :, j])
                maxLogW = np.max(logW)
                w = np.exp(logW - maxLogW)
                b = hlp.discreteSampling(w, np.arange(self.N), 1)
                Xout[:, j] = self.X[b, :, j]

            return Xout
        else:
            b = hlp.discreteSampling(np.ones(self.N), np.arange(self.N), M)
            return self.X[b, :, :]
Beispiel #5
0
    def simulate(self, BS=True):
        """Simulate properly weighted sample.
        
        Parameters
        ----------
        BS : bool
            Sample using backward simulation.
            
        Returns
        -------
        Xout : 1-D array_like
            Simulated trajectory.
        """
        if BS:
            C1 = 0.5

            def logPsi(xp, x):
                return C1 * (x == xp)

            w = np.zeros(self.N)
            logW = np.zeros(self.N)
            Xout = np.zeros(self.I)

            b = hlp.discreteSampling(np.ones(self.N), np.arange(self.N), 1)
            Xout[-1] = self.X[b, -1]
            for i in np.arange(self.I - 1)[::-1]:
                logW = logPsi(Xout[i + 1], self.X[:, i])
                maxLogW = np.max(logW)
                w = np.exp(logW - maxLogW)
                b = hlp.discreteSampling(w, np.arange(self.N), 1)
                Xout[i] = self.X[b, i]

            return Xout
        else:
            b = hlp.discreteSampling(np.ones(self.N), np.arange(self.N), M)
            return self.Xa[b, :]
Beispiel #6
0
    def simulate(self, M, BS=True):
        r"""Simulate properly weighted sample.
        
        Parameters
        ----------
        BS : bool
            Sample using backward simulation.
            
        Returns
        -------
        Xout : 1-D array_like
            Simulated trajectory.
        """
        if BS:

            def logPsi(xp, x):
                return -0.5 * self.params.tauPsi * (xp - x)**2

            w = np.zeros(self.N)
            logW = np.zeros(self.N)
            Xout = np.zeros((M, self.d))

            b = hlp.discreteSampling(np.ones(self.N), np.arange(self.N), M)
            Xout[:, -1] = self.X[b, -1]
            for i in np.arange(self.d - 1)[::-1]:
                for j in np.arange(M):
                    logW = logPsi(Xout[j, i + 1], self.X[:, i])
                    maxLogW = np.max(logW)
                    w = np.exp(logW - maxLogW)
                    b = hlp.discreteSampling(w, np.arange(self.N), 1)
                    Xout[j, i] = self.X[b, i]

            return Xout
        else:
            b = hlp.discreteSampling(np.ones(self.N), np.arange(self.N), M)
            return self.Xa[b, :]
Beispiel #7
0
            for col in range(d):
                for row in range(d):
                    # Propagate
                    wInd = np.zeros(5)
                    wInd[0] = 1.
                    if row > 0:
                        wInd[2] = 0.5
                    if row < d - 1:
                        wInd[4] = 0.5
                    if col > 0:
                        wInd[1] = 0.5
                    if col < d - 1:
                        wInd[3] = 0.5
                    wInd /= np.sum(wInd)
                    for j in range(M):
                        ind = hlp.discreteSampling(wInd, range(5), 1)
                        xMean = np.zeros(M)
                        if ind == 0:
                            xMean[j] = Xprev[i, j, row, col]
                        elif ind == 1:
                            xMean[j] = Xprev[i, j, row, col - 1]
                        elif ind == 2:
                            xMean[j] = Xprev[i, j, row - 1, col]
                        elif ind == 3:
                            xMean[j] = Xprev[i, j, row, col + 1]
                        elif ind == 4:
                            xMean[j] = Xprev[i, j, row + 1, col]
                    Xcur[i, :, row, col] = xMean + np.random.normal(size=M)

                    # Weight
                    logW = logPhi(Xcur[i, :, row, col], y[t, row, col])
Beispiel #8
0
    def __init__(self, t, N, xCond=None):
        def phi(x, y, sig2, mu_ab, mu_norm):
            return np.exp(-0.5 * (y - mu_ab * x.astype("float") - mu_norm * (1.0 - x.astype("float"))) ** 2 / sig2)

        def rho(xp, x):
            return np.exp(C2 * (xp.astype("bool") == x.astype("bool")).astype("float"))

        def psi(xp, x):
            return np.exp(C1 * (xp == x).astype("float"))

        C1 = 0.5
        C2 = 3.0

        # Model init
        xDomain = np.arange(2)
        psiMat = np.array(
            [
                np.exp(C1 * (xDomain.astype("bool") == False).astype("float")),
                np.exp(C1 * (xDomain.astype("bool") == True).astype("float")),
            ]
        )

        # Load parameters
        # region = 'dustBowl'
        region = "sahel"
        filename = "parameters/" + region + "Sigma2_N35-55_W90-120_downsampled.csv"
        sigma2 = np.loadtxt(filename, delimiter=",")
        filename = "parameters/" + region + "MuAb_N35-55_W90-120_downsampled.csv"
        muAb = np.loadtxt(filename, delimiter=",")
        filename = "parameters/" + region + "MuNorm_N35-55_W90-120_downsampled.csv"
        muNorm = np.loadtxt(filename, delimiter=",")
        filename = "processedData/" + region + "Yt" + str(t) + "_N35-55_W90-120_downsampled.csv"

        Y = np.loadtxt(filename, delimiter=",")
        I = Y.shape[0]
        J = Y.shape[1]

        # SMC init
        X = np.zeros((N, I, J), dtype=bool)
        ancestors = np.zeros(N)
        logZ = 0.0
        logW = np.zeros(N)
        w = np.zeros(N)
        ESS = np.zeros(J)
        msg = np.zeros((N, I, 2))
        c = np.zeros((N, I))
        # ---------------
        #      SMC
        # ---------------

        # SMC first iteration, j = 0

        # Forward filtering
        unaryFactor = np.ones((N, I, 2))
        for n in range(N):
            unaryFactor[n, 0, :] *= phi(xDomain, Y[0, 0], sigma2[0, 0], muAb[0, 0], muNorm[0, 0])
            unaryFactor[n, 0, :] *= rho(xDomain, xCond[0, 0])
            msg[n, 0, :] = np.dot(psiMat, unaryFactor[n, 0, :])
            c[n, 0] = np.sum(msg[n, 0, :])
            msg[n, 0, :] /= c[n, 0]

            for i in np.arange(1, I - 1):
                unaryFactor[n, i, :] *= phi(xDomain, Y[i, 0], sigma2[i, 0], muAb[i, 0], muNorm[i, 0])
                unaryFactor[n, i, :] *= rho(xDomain, xCond[i, 0])
                msg[n, i, :] = np.dot(psiMat, unaryFactor[n, i, :] * msg[n, i - 1, :])
                c[n, i] = np.sum(msg[n, i, :])
                msg[n, i, :] /= c[n, i]
            unaryFactor[n, I - 1, :] *= phi(xDomain, Y[I - 1, 0], sigma2[I - 1, 0], muAb[I - 1, 0], muNorm[I - 1, 0])
            unaryFactor[n, I - 1, :] *= rho(xDomain, xCond[I - 1, 0])

        # Backward sampling
        for n in range(N):
            tempDist = unaryFactor[n, I - 1, :] * msg[n, I - 2, :]
            tempDist /= np.sum(tempDist)
            X[n, I - 1, 0] = hlp.discreteSampling(tempDist, xDomain, 1)

            for i in np.arange(2, I - 1)[::-1]:
                tempDist = unaryFactor[n, i, :] * msg[n, i - 1, :]
                tempDist /= np.sum(tempDist)
                X[n, i, 0] = hlp.discreteSampling(tempDist * psiMat[:, X[n, i + 1, 0]], xDomain, 1)

        logW = np.sum(np.log(c[:, : I - 1]), axis=1) + np.log(
            np.sum(unaryFactor[:, I - 1, :] * msg[:, I - 2, :], axis=1)
        )
        maxLogW = np.max(logW)
        w = np.exp(logW - maxLogW)
        logZ += maxLogW + np.log(np.sum(w)) - np.log(N)

        # SMC iteration j = 1 to J
        for j in np.arange(1, J):
            # Forward filtering
            unaryFactor = np.ones((N, I, 2))
            for n in range(N):
                unaryFactor[n, 0, :] *= phi(xDomain, Y[0, j], sigma2[0, j], muAb[0, j], muNorm[0, j])
                unaryFactor[n, 0, :] *= rho(xDomain, xCond[0, j])
                unaryFactor[n, 0, :] *= psi(xDomain, X[n, 0, j - 1])
                msg[n, 0, :] = np.dot(psiMat, unaryFactor[n, 0, :])
                c[n, 0] = np.sum(msg[n, 0, :])
                msg[n, 0, :] /= c[n, 0]

                for i in np.arange(1, I - 1):
                    unaryFactor[n, i, :] *= phi(xDomain, Y[i, j], sigma2[i, j], muAb[i, j], muNorm[i, j])
                    unaryFactor[n, i, :] *= rho(xDomain, xCond[i, j])
                    unaryFactor[n, i, :] *= psi(xDomain, X[n, i, j - 1])
                    msg[n, i, :] = np.dot(psiMat, unaryFactor[n, i, :] * msg[n, i - 1, :])
                    c[n, i] = np.sum(msg[n, i, :])
                    msg[n, i, :] /= c[n, i]

                unaryFactor[n, I - 1, :] *= phi(
                    xDomain, Y[I - 1, j], sigma2[I - 1, j], muAb[I - 1, j], muNorm[I - 1, j]
                )
                unaryFactor[n, I - 1, :] *= rho(xDomain, xCond[I - 1, j])
                unaryFactor[n, I - 1, :] *= psi(xDomain, X[n, I - 1, j - 1])

            logW = np.sum(np.log(c[:, : I - 1]), axis=1) + np.log(
                np.sum(unaryFactor[:, I - 1, :] * msg[:, I - 2, :], axis=1)
            )
            maxLogW = np.max(logW)
            w = np.exp(logW - maxLogW)
            logZ += maxLogW + np.log(np.sum(w)) - np.log(N)
            ancestors = res.resampling(w, "stratified")

            # Backward sampling
            for n in range(N):
                tempDist = unaryFactor[ancestors[n], I - 1, :] * msg[ancestors[n], I - 2, :]
                tempDist /= np.sum(tempDist)
                X[n, I - 1, j] = hlp.discreteSampling(tempDist, xDomain, 1)

                for i in np.arange(2, I - 1)[::-1]:
                    tempDist = unaryFactor[ancestors[n], i, :] * msg[ancestors[n], i - 1, :]
                    tempDist /= np.sum(tempDist)
                    X[n, i, j] = hlp.discreteSampling(tempDist * psiMat[:, X[n, i + 1, j]], xDomain, 1)

        ## Save init to class object
        self.N = N
        self.J = J
        self.I = I
        self.X = X
        self.logZ = logZ
        self.w = w
        self.xCond = xCond
        self.ESS = ESS
Beispiel #9
0
    def __init__(self, t, N, xCond=None):
        def phi(x, y, sig2, mu_ab, mu_norm):
            return np.exp(-0.5 * (y - mu_ab * x.astype('float') - mu_norm *
                                  (1. - x.astype('float')))**2 / sig2)

        def rho(xp, x):
            return np.exp(
                C2 * (xp.astype('bool') == x.astype('bool')).astype('float'))

        def psi(xp, x):
            return np.exp(C1 * (xp == x).astype('float'))

        C1 = 0.5
        C2 = 3.

        # Model init
        xDomain = np.arange(2)
        psiMat = np.array([
            np.exp(C1 * (xDomain.astype('bool') == False).astype('float')),
            np.exp(C1 * (xDomain.astype('bool') == True).astype('float'))
        ])

        # Load parameters
        #region = 'dustBowl'
        region = 'sahel'
        filename = 'parameters/' + region + 'Sigma2_N35-55_W90-120_downsampled.csv'
        sigma2 = np.loadtxt(filename, delimiter=',')
        filename = 'parameters/' + region + 'MuAb_N35-55_W90-120_downsampled.csv'
        muAb = np.loadtxt(filename, delimiter=',')
        filename = 'parameters/' + region + 'MuNorm_N35-55_W90-120_downsampled.csv'
        muNorm = np.loadtxt(filename, delimiter=',')
        filename = 'processedData/' + region + 'Yt' + str(
            t) + '_N35-55_W90-120_downsampled.csv'

        Y = np.loadtxt(filename, delimiter=',')
        I = Y.shape[0]
        J = Y.shape[1]

        # SMC init
        X = np.zeros((N, I, J), dtype=bool)
        ancestors = np.zeros(N)
        logZ = 0.
        logW = np.zeros(N)
        w = np.zeros(N)
        ESS = np.zeros(J)
        msg = np.zeros((N, I, 2))
        c = np.zeros((N, I))
        # ---------------
        #      SMC
        # ---------------

        # SMC first iteration, j = 0

        # Forward filtering
        unaryFactor = np.ones((N, I, 2))
        for n in range(N):
            unaryFactor[n, 0, :] *= phi(xDomain, Y[0, 0], sigma2[0, 0],
                                        muAb[0, 0], muNorm[0, 0])
            unaryFactor[n, 0, :] *= rho(xDomain, xCond[0, 0])
            msg[n, 0, :] = np.dot(psiMat, unaryFactor[n, 0, :])
            c[n, 0] = np.sum(msg[n, 0, :])
            msg[n, 0, :] /= c[n, 0]

            for i in np.arange(1, I - 1):
                unaryFactor[n, i, :] *= phi(xDomain, Y[i, 0], sigma2[i, 0],
                                            muAb[i, 0], muNorm[i, 0])
                unaryFactor[n, i, :] *= rho(xDomain, xCond[i, 0])
                msg[n, i, :] = np.dot(psiMat,
                                      unaryFactor[n, i, :] * msg[n, i - 1, :])
                c[n, i] = np.sum(msg[n, i, :])
                msg[n, i, :] /= c[n, i]
            unaryFactor[n, I - 1, :] *= phi(xDomain, Y[I - 1, 0], sigma2[I - 1,
                                                                         0],
                                            muAb[I - 1, 0], muNorm[I - 1, 0])
            unaryFactor[n, I - 1, :] *= rho(xDomain, xCond[I - 1, 0])

        # Backward sampling
        for n in range(N):
            tempDist = unaryFactor[n, I - 1, :] * msg[n, I - 2, :]
            tempDist /= np.sum(tempDist)
            X[n, I - 1, 0] = hlp.discreteSampling(tempDist, xDomain, 1)

            for i in np.arange(2, I - 1)[::-1]:
                tempDist = unaryFactor[n, i, :] * msg[n, i - 1, :]
                tempDist /= np.sum(tempDist)
                X[n, i, 0] = hlp.discreteSampling(
                    tempDist * psiMat[:, X[n, i + 1, 0]], xDomain, 1)

        logW = np.sum(np.log(c[:, :I - 1]), axis=1) + np.log(
            np.sum(unaryFactor[:, I - 1, :] * msg[:, I - 2, :], axis=1))
        maxLogW = np.max(logW)
        w = np.exp(logW - maxLogW)
        logZ += maxLogW + np.log(np.sum(w)) - np.log(N)

        # SMC iteration j = 1 to J
        for j in np.arange(1, J):
            # Forward filtering
            unaryFactor = np.ones((N, I, 2))
            for n in range(N):
                unaryFactor[n, 0, :] *= phi(xDomain, Y[0, j], sigma2[0, j],
                                            muAb[0, j], muNorm[0, j])
                unaryFactor[n, 0, :] *= rho(xDomain, xCond[0, j])
                unaryFactor[n, 0, :] *= psi(xDomain, X[n, 0, j - 1])
                msg[n, 0, :] = np.dot(psiMat, unaryFactor[n, 0, :])
                c[n, 0] = np.sum(msg[n, 0, :])
                msg[n, 0, :] /= c[n, 0]

                for i in np.arange(1, I - 1):
                    unaryFactor[n, i, :] *= phi(xDomain, Y[i, j], sigma2[i, j],
                                                muAb[i, j], muNorm[i, j])
                    unaryFactor[n, i, :] *= rho(xDomain, xCond[i, j])
                    unaryFactor[n, i, :] *= psi(xDomain, X[n, i, j - 1])
                    msg[n,
                        i, :] = np.dot(psiMat,
                                       unaryFactor[n, i, :] * msg[n, i - 1, :])
                    c[n, i] = np.sum(msg[n, i, :])
                    msg[n, i, :] /= c[n, i]

                unaryFactor[n,
                            I - 1, :] *= phi(xDomain, Y[I - 1,
                                                        j], sigma2[I - 1, j],
                                             muAb[I - 1, j], muNorm[I - 1, j])
                unaryFactor[n, I - 1, :] *= rho(xDomain, xCond[I - 1, j])
                unaryFactor[n, I - 1, :] *= psi(xDomain, X[n, I - 1, j - 1])

            logW = np.sum(np.log(c[:, :I - 1]), axis=1) + np.log(
                np.sum(unaryFactor[:, I - 1, :] * msg[:, I - 2, :], axis=1))
            maxLogW = np.max(logW)
            w = np.exp(logW - maxLogW)
            logZ += maxLogW + np.log(np.sum(w)) - np.log(N)
            ancestors = res.resampling(w, 'stratified')

            # Backward sampling
            for n in range(N):
                tempDist = unaryFactor[ancestors[n],
                                       I - 1, :] * msg[ancestors[n], I - 2, :]
                tempDist /= np.sum(tempDist)
                X[n, I - 1, j] = hlp.discreteSampling(tempDist, xDomain, 1)

                for i in np.arange(2, I - 1)[::-1]:
                    tempDist = unaryFactor[ancestors[n],
                                           i, :] * msg[ancestors[n], i - 1, :]
                    tempDist /= np.sum(tempDist)
                    X[n, i, j] = hlp.discreteSampling(
                        tempDist * psiMat[:, X[n, i + 1, j]], xDomain, 1)

        ## Save init to class object
        self.N = N
        self.J = J
        self.I = I
        self.X = X
        self.logZ = logZ
        self.w = w
        self.xCond = xCond
        self.ESS = ESS
Beispiel #10
0
    def __init__(self, params, y, N, xTimeCond=None, xSpaceCond=None):
        C1 = 0.5
        C2 = 3.

        # Model init
        xDomain = np.arange(2)

        def logPhi(x, y, sig2, mu_ab, mu_norm):
            return -0.5 * (y - mu_ab * x.astype('float') - mu_norm *
                           (1. - x.astype('float')))**2 / sig2

        I = params.I
        muAb = params.muAb
        muNorm = params.muNorm
        sigma2 = params.sigma2

        # SMC init
        X = np.zeros((N, I), dtype=bool)
        ancestors = np.zeros(N)
        logZ = 0.
        logW = np.zeros(N)
        w = np.zeros(N)

        # ---------------
        #      SMC
        # ---------------
        # Sample proposal
        tempDist = np.zeros(2)
        if xTimeCond is not None:
            tempDist += C2 * (xTimeCond[0] == xDomain.astype(bool))
        if xSpaceCond is not None:
            tempDist += C1 * (xSpaceCond[0] == xDomain.astype(bool))
        tempDist = np.exp(tempDist)
        tempDist /= np.sum(tempDist)
        X[:, 0] = hlp.discreteSampling(tempDist, xDomain, N)

        # Weighting
        logW = logPhi(X[:, 0], y[0], sigma2[0], muAb[0], muNorm[0])
        maxLogW = np.max(logW)
        w = np.exp(logW - maxLogW)
        logZ = maxLogW + np.log(np.sum(w)) - np.log(N)
        w /= np.sum(w)
        ancestors = hlp.resampling(w)
        X[:, 0] = X[ancestors, 0]

        ## SMC MAIN LOOP
        for i in np.arange(1, I):
            tempDist = np.zeros(2)
            if xTimeCond is not None:
                tempDist += C2 * (xTimeCond[i] == xDomain.astype(bool))
            if xSpaceCond is not None:
                tempDist += C1 * (xSpaceCond[i] == xDomain.astype(bool))
            for iParticle in range(N):
                tempParticleDist = tempDist + C1 * (X[iParticle, i - 1]
                                                    == xDomain.astype(bool))
                tempParticleDist = np.exp(tempParticleDist)
                tempParticleDist /= np.sum(tempParticleDist)
                X[iParticle, i] = hlp.discreteSampling(tempParticleDist,
                                                       xDomain, 1)
            logW = logPhi(X[:, i], y[i], sigma2[i], muAb[i], muNorm[i])
            maxLogW = np.max(logW)
            w = np.exp(logW - maxLogW)
            logZ += maxLogW + np.log(np.sum(w)) - np.log(N)
            #if math.isnan(logZ):
            #print 'X: ',X[:,i]
            #print 'y: ',y[i]
            #print 'muAb: ',muAb[i]
            #print 'muNorm: ',muNorm[i]
            #print 'sig2: ',sigma2[i]
            #raw_input()
            w /= np.sum(w)
            ancestors = hlp.resampling(w)
            X[:, i] = X[ancestors, i]

        ## Save init to class object
        self.N = N
        self.C1 = C1
        self.I = I
        self.X = X
        self.y = y
        self.logZ = logZ
        self.w = w
Beispiel #11
0
    def __init__(self, params, y, N, xTimeCond=None, xSpaceCond=None):
		C1 = 0.5
		C2 = 3.

		# Model init
		xDomain = np.arange(2)
		def logPhi(x,y,sig2,mu_ab,mu_norm): return -0.5*(y-mu_ab*x.astype('float')-mu_norm*(1.-x.astype('float')))**2/sig2

		I = params.I
		muAb = params.muAb
		muNorm = params.muNorm
		sigma2 = params.sigma2
		
		# SMC init
		X = np.zeros( (N, I), dtype=bool )
		ancestors = np.zeros( N )
		logZ = 0.
		logW = np.zeros( N )
		w = np.zeros( N )
		
		# ---------------
		#      SMC
		# ---------------        
		# Sample proposal
		tempDist = np.zeros(2)
		if xTimeCond is not None:
			tempDist += C2*(xTimeCond[0] == xDomain.astype(bool))
		if xSpaceCond is not None:
			tempDist += C1*(xSpaceCond[0] == xDomain.astype(bool))
		tempDist = np.exp(tempDist)
		tempDist /= np.sum(tempDist)
		X[:,0] = hlp.discreteSampling(tempDist, xDomain, N)
		
		# Weighting
		logW = logPhi(X[:,0], y[0], sigma2[0], muAb[0], muNorm[0])
		maxLogW = np.max(logW)
		w = np.exp(logW-maxLogW)
		logZ = maxLogW + np.log(np.sum(w)) - np.log(N)
		w /= np.sum(w)
		ancestors = hlp.resampling(w)
		X[:,0] = X[ancestors,0]
		
			
		## SMC MAIN LOOP
		for i in np.arange(1,I):
			tempDist = np.zeros(2)
			if xTimeCond is not None:
				tempDist += C2*(xTimeCond[i] == xDomain.astype(bool))
			if xSpaceCond is not None:
				tempDist += C1*(xSpaceCond[i] == xDomain.astype(bool))
			for iParticle in range(N):
				tempParticleDist = tempDist+C1*(X[iParticle,i-1] == xDomain.astype(bool))
				tempParticleDist = np.exp(tempParticleDist)
				tempParticleDist /= np.sum(tempParticleDist)
				X[iParticle,i] = hlp.discreteSampling(tempParticleDist, xDomain, 1)
			logW = logPhi(X[:,i], y[i], sigma2[i], muAb[i], muNorm[i])
			maxLogW = np.max(logW)
			w = np.exp(logW-maxLogW)
			logZ += maxLogW + np.log(np.sum(w)) - np.log(N)
			#if math.isnan(logZ):
				#print 'X: ',X[:,i]
				#print 'y: ',y[i]
				#print 'muAb: ',muAb[i]
				#print 'muNorm: ',muNorm[i]
				#print 'sig2: ',sigma2[i]
				#raw_input()
			w /= np.sum(w)
			ancestors = hlp.resampling(w)
			X[:,i] = X[ancestors,i]
		
		## Save init to class object
		self.N = N
		self.C1 = C1
		self.I = I
		self.X = X
		self.y = y
		self.logZ = logZ
		self.w = w
Beispiel #12
0
 for col in range(d):
     for row in range(d):
         # Propagate
         wInd = np.zeros(5)
         wInd[0] = 1.
         if row>0:
             wInd[2] = 0.5
         if row<d-1:
             wInd[4] = 0.5
         if col>0:
             wInd[1] = 0.5
         if col<d-1:
             wInd[3] = 0.5
         wInd /= np.sum(wInd)
         for j in range(M):
             ind = hlp.discreteSampling(wInd, range(5), 1)
             xMean = np.zeros(M)
             if ind == 0:
                 xMean[j] = Xprev[i,j,row,col]
             elif ind == 1:
                 xMean[j] = Xprev[i,j,row,col-1]
             elif ind == 2:
                 xMean[j] = Xprev[i,j,row-1,col]
             elif ind == 3:
                 xMean[j] = Xprev[i,j,row,col+1]
             elif ind == 4:
                 xMean[j] = Xprev[i,j,row+1,col]
         Xcur[i,:,row,col] = xMean + np.random.normal(size=M)
         
         # Weight
         logW = logPhi(Xcur[i,:,row,col],y[t,row,col])