Beispiel #1
0
def vae(x, args):
    opt = hem.init_optimizer(args)
    tower_grads = []

    for x, scope, gpu_id in hem.tower_scope_range(x, args.n_gpus, args.batch_size):
        # model
        with tf.variable_scope('encoder'):
            e = encoder(x, args, reuse=(gpu_id>0))
        with tf.variable_scope('latent'):
            samples, z, z_mean, z_stddev = latent(e, args.batch_size, args.latent_size, reuse=(gpu_id>0))
        with tf.variable_scope('decoder'):
            d_real = decoder(z, args, reuse=(gpu_id>0))
            d_fake = decoder(samples, args, reuse=True)
        # losses
        d_loss, l_loss, t_loss = losses(x, z_mean, z_stddev, d_real)
        # gradients
        tower_grads.append(opt.compute_gradients(d_loss))

    # summaries
    summaries(x, d_fake, d_real, args)

    # training
    avg_grads = hem.average_gradients(tower_grads)
    hem.summarize_gradients(avg_grads)
    train_op = opt.apply_gradients(avg_grads, global_step=tf.train.get_global_step())

    return hem.default_training(train_op)
Beispiel #2
0
    def __init__(self, x_y, args):
        # init/setup
        m_opt = hem.init_optimizer(args)
        m_tower_grads = []
        global_step = tf.train.get_global_step()

        # foreach gpu...
        for x_y, scope, gpu_id in hem.tower_scope_range(x_y, args.n_gpus, args.batch_size):

            # for i in range(len(x_y)):
            #     print('estimator', i, x_y[i])

            # x = x_y[0]
            # y = x_y[1]

            m_arch = {'E2': mean_depth_estimator.E2}
            x = x_y[4]
            x = tf.reshape(x, (-1, 3, 53, 70))
            # print('estimator x shape', x)
            y = x_y[5]

            with tf.variable_scope('model'):
                m_func = m_arch[args.m_arch]
                m = m_func(x, args, reuse=(gpu_id>0))
                self.output_layer = m
            # calculate losses
            m_loss = mean_depth_estimator.loss(m, x, y, args, reuse=(gpu_id > 0))
            # calculate gradients
            m_params = tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES, 'model')
            m_tower_grads.append(m_opt.compute_gradients(m_loss, var_list=m_params))
            # only need one batchnorm update (ends up being updates for last tower)
            batchnorm_updates = tf.get_collection(tf.GraphKeys.UPDATE_OPS, scope)
            # TODO: do we need to do this update for batchrenorm? for instance renorm?

        # average and apply gradients
        m_grads = hem.average_gradients(m_tower_grads, check_numerics=args.check_numerics)
        m_apply_grads = m_opt.apply_gradients(m_grads, global_step=global_step)

        # add summaries
        hem.summarize_losses()
        hem.summarize_gradients(m_grads, name='m_gradients')
        hem.summarize_layers('m_activations', [l for l in tf.get_collection('conv_layers') if 'model' in l.name], montage=True)
        mean_depth_estimator.montage_summaries(x, y, m, args)
        # improved_sampler.montage_summarpies(x, y, g, x_sample, y_sample, g_sampler, x_noise, g_noise, x_shuffled, y_shuffled, g_shuffle, args)
        # improved_sampler.sampler_summaries(y_sample, g_sampler, g_noise, y_shuffled, g_shuffle, args)

        # training ops
        with tf.control_dependencies(batchnorm_updates):
            self.m_train_op = m_apply_grads
        self.all_losses = hem.collection_to_dict(tf.get_collection('losses'))
Beispiel #3
0
def summaries(x, d, avg_grads, args):
    with tf.variable_scope('examples'):
        n = int(sqrt(args.examples))
        hem.montage(hem.rescale(x[0:args.examples], (-1, 1), (0, 1)),
                    n,
                    n,
                    name='inputs')
        hem.montage(hem.rescale(d[0:args.examples], (-1, 1), (0, 1)),
                    n,
                    n,
                    name='outputs')
    hem.summarize_activations()
    hem.summarize_losses()
    hem.summarize_weights_biases()
    hem.summarize_gradients(avg_grads)
Beispiel #4
0
 def summaries(x, y, x_hat, y_hat, x_grads, y_grads, args):
     n = math.floor(math.sqrt(args.examples))
     with arg_scope([hem.montage], height=n, width=n):
         x = hem.rescale(x, (-1, 1), (0, 1))
         y = hem.rescale(y, (-1, 1), (0, 1))
         x_hat = hem.rescale(x_hat, (-1, 1), (0, 1))
         y_hat = hem.rescale(y_hat, (-1, 1), (0, 1))
         hem.montage(x[0:args.examples], name='x')
         hem.montage(y[0:args.examples], name='y', colorize=True)
         hem.montage(x_hat[0:args.examples], name='x_hat')
         hem.montage(y_hat[0:args.examples], name='y_hat', colorize=True)
     hem.summarize_gradients(x_grads)
     hem.summarize_gradients(y_grads)
     hem.summarize_losses()
     hem.summarize_activations(False)
     hem.summarize_weights_biases()
Beispiel #5
0
    def __init__(self, x_y, args):
        # init/setup
        g_opt = tf.train.AdamOptimizer(args.g_lr, args.g_beta1, args.g_beta2)
        d_opt = tf.train.AdamOptimizer(args.d_lr, args.d_beta1, args.d_beta2)
        g_tower_grads = []
        d_tower_grads = []
        global_step = tf.train.get_global_step()

        self.mean_image_placeholder = tf.placeholder(dtype=tf.float32,
                                                     shape=(1, 29, 29))
        # self.var_image_placeholder = tf.placeholder(dtype=tf.float32, shape=(1, 29, 29))

        # foreach gpu...
        for x_y, scope, gpu_id in hem.tower_scope_range(
                x_y, args.n_gpus, args.batch_size):
            with tf.variable_scope('input_preprocess'):
                # split inputs and rescale
                x = x_y[0]
                y = x_y[1]

                # re-attach shape info
                x = tf.reshape(x, (args.batch_size, 3, 65, 65))
                # rescale from [0,1] to actual world depth
                y = y * 10.0
                y = hem.crop_to_bounding_box(y, 17, 17, 29, 29)
                # re-attach shape info
                y = tf.reshape(y, (args.batch_size, 1, 29, 29))
                y_bar = tf.reduce_mean(y, axis=[2, 3], keep_dims=True)
                x_sample = tf.stack([x[0]] * args.batch_size)
                y_sample = tf.stack([y[0]] * args.batch_size)

            # create model
            with tf.variable_scope('generator'):
                if args.model_version == 'baseline':
                    g = self.g_baseline(x, args, reuse=(gpu_id > 0))
                    g_0 = tf.zeros_like(g)
                    y_hat = g + y_bar
                    y_0 = g_0 + y_bar
                    g_sampler = self.g_baseline(x_sample, args, reuse=True)
                    y_sample_bar = tf.reduce_mean(y_sample,
                                                  axis=[2, 3],
                                                  keep_dims=True)
                    y_sampler = g_sampler + y_sample_bar

            with tf.variable_scope('discriminator'):
                if args.model_version == 'baseline':
                    # this is the 'mean_adjusted' model from paper_baseline_sampler.py
                    d_fake, d_fake_logits = self.d_baseline(x,
                                                            y_hat - y_bar,
                                                            args,
                                                            reuse=(gpu_id > 0))
                    d_real, d_real_logits = self.d_baseline(x,
                                                            y - y_bar,
                                                            args,
                                                            reuse=True)

            # calculate losses
            g_loss, d_loss = self.loss(d_real,
                                       d_real_logits,
                                       d_fake,
                                       d_fake_logits,
                                       reuse=(gpu_id > 0))
            # calculate gradients
            g_params = tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES,
                                         'generator')
            d_params = tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES,
                                         'discriminator')
            g_tower_grads.append(
                g_opt.compute_gradients(g_loss, var_list=g_params))
            d_tower_grads.append(
                d_opt.compute_gradients(d_loss, var_list=d_params))

        # average and apply gradients
        g_grads = hem.average_gradients(g_tower_grads,
                                        check_numerics=args.check_numerics)
        d_grads = hem.average_gradients(d_tower_grads,
                                        check_numerics=args.check_numerics)
        g_apply_grads = g_opt.apply_gradients(g_grads, global_step=global_step)
        d_apply_grads = d_opt.apply_gradients(d_grads, global_step=global_step)

        # add summaries
        hem.summarize_losses()
        hem.summarize_gradients(g_grads, name='g_gradients')
        hem.summarize_gradients(d_grads, name='d_gradients')
        generator_layers = [
            l for l in tf.get_collection('conv_layers')
            if 'generator' in l.name
        ]
        discriminator_layers = [
            l for l in tf.get_collection('conv_layers')
            if 'discriminator' in l.name
        ]
        hem.summarize_layers('g_activations', generator_layers, montage=True)
        hem.summarize_layers('d_activations',
                             discriminator_layers,
                             montage=True)
        self.montage_summaries(x, y, g, y_hat, args, name='y_hat')
        self.metric_summaries(x, y, g, y_hat, args, name='y_hat')
        self.metric_summaries(x, y, g_0, y_0, args, name='y_0')
        self.metric_summaries(x,
                              y,
                              g,
                              self.mean_image_placeholder * 10.0,
                              args,
                              name='y_mean')
        self.metric_summaries(x_sample,
                              y_sample,
                              g_sampler,
                              y_sampler,
                              args,
                              name='y_sampler')
        self.montage_summaries(x_sample,
                               y_sample,
                               g_sampler,
                               y_sampler,
                               args,
                               name='y_sampler')

        # training ops
        self.g_train_op = g_apply_grads
        self.d_train_op = d_apply_grads
        self.all_losses = hem.collection_to_dict(tf.get_collection('losses'))
Beispiel #6
0
    def __init__(self, x_y, args):
        # init/setup
        g_opt = tf.train.AdamOptimizer(args.g_lr, args.g_beta1, args.g_beta2)
        g_tower_grads = []
        global_step = tf.train.get_global_step()

        self.mean_image_placeholder = tf.placeholder(dtype=tf.float32, shape=(1, 29, 29))
        # self.var_image_placeholder = tf.placeholder(dtype=tf.float32, shape=(1, 29, 29))

        self.x = []
        self.y = []
        self.y_hat = []
        self.g = []

        # foreach gpu...
        for x_y, scope, gpu_id in hem.tower_scope_range(x_y, args.n_gpus, args.batch_size):
            with tf.variable_scope('input_preprocess'):
                # split inputs and rescale
                x = tf.identity(x_y[0], name='tower_{}_x'.format(gpu_id))
                y = tf.identity(x_y[1], name='tower_{}_y'.format(gpu_id))
                # re-attach shape info
                x = tf.reshape(x, (args.batch_size, 3, 65, 65))
                # rescale from [0,1] to actual world depth
                y = y * 10.0
                y = hem.crop_to_bounding_box(y, 17, 17, 29, 29)
                # re-attach shape info
                y = tf.reshape(y, (args.batch_size, 1, 29, 29))
                y_bar = tf.reduce_mean(y, axis=[2, 3], keep_dims=True)
                y_bar = tf.identity(y_bar, name='tower_{}_y_bar'.format(gpu_id))



            # create model
            with tf.variable_scope('generator'):
                if args.model_version == 'baseline':
                    g = self.g_baseline(x, args, reuse=(gpu_id > 0))
                    g_0 = tf.zeros_like(g)
                    y_hat = g
                    y_0 = g_0
                elif args.model_version == 'mean_adjusted':
                    g = self.g_baseline(x, args, reuse=(gpu_id > 0))
                    g_0 = tf.zeros_like(g)
                    y_hat = g + y_bar
                    y_0 = g_0 + y_bar
                elif args.model_version == 'mean_provided':
                    g = self.g_mean_provided(x, y_bar, args, reuse=(gpu_id > 0))
                    g_0 = tf.zeros_like(g)
                    y_hat = g + y_bar
                    y_0 = g_0 + y_bar
                elif args.model_version == 'mean_provided2':
                    g = self.g_mean_provided2(x, y_bar, args, reuse=(gpu_id > 0))
                    g_0 = tf.zeros_like(g)
                    y_hat = g + y_bar
                    y_0 = g_0 + y_bar

                g = tf.identity(g, 'tower_{}_g'.format(gpu_id))
                g_0 = tf.identity(g_0, 'tower_{}_g0'.format(gpu_id))
                y_hat = tf.identity(y_hat, 'tower_{}_y_hat'.format(gpu_id))
                y_0 = tf.identity(y_0, 'tower_{}_y0'.format(gpu_id))

                # if gpu_id == 0:
                #     tf.summary.histogram('g', g)
                #     tf.summary.histogram('y_hat', y_hat)
                #     tf.summary.histogram('y_0', y_0)
                #     hem.montage(g, num_examples=64, width=8, height=8, name='g')
                #     hem.montage(y_hat, num_examples=64, width=8, height=8, name='y_hat')
                #     hem.montage(y_0, num_examples=64, width=8, height=8, name='y_0')

                self.g.append(g)
                self.y_hat.append(y_hat)
                self.y.append(y)
                self.x.append(x)

            # calculate losses
            g_loss = self.loss(x, y, y_hat, args, reuse=(gpu_id > 0))
            # calculate gradients
            g_params = tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES, 'generator')
            g_tower_grads.append(g_opt.compute_gradients(g_loss, var_list=g_params))

        # average and apply gradients
        g_grads = hem.average_gradients(g_tower_grads, check_numerics=args.check_numerics)
        g_apply_grads = g_opt.apply_gradients(g_grads, global_step=global_step)

        # add summaries
        hem.summarize_losses()
        hem.summarize_gradients(g_grads, name='g_gradients')
        generator_layers = [l for l in tf.get_collection('conv_layers') if 'generator' in l.name]
        hem.summarize_layers('g_activations', generator_layers, montage=True)
        self.montage_summaries(x, y, g, y_hat, args)
        self.metric_summaries(x, y, g, y_hat, args, name='y_hat')
        self.metric_summaries(x, y, g_0, y_0, args, name='y_0')
        self.metric_summaries(x, y, g, self.mean_image_placeholder * 10.0, args, name='y_mean')

        # training ops
        self.g_train_op = g_apply_grads
        self.all_losses = hem.collection_to_dict(tf.get_collection('losses'))
Beispiel #7
0
    def __init__(self, x_y, estimator, args):
        # init/setup
        g_opt = hem.init_optimizer(args)
        d_opt = hem.init_optimizer(args)
        g_tower_grads = []
        d_tower_grads = []
        global_step = tf.train.get_global_step()



        # sess = tf.Session(config = tf.ConfigProto(allow_soft_placement=True, log_device_placement=False))
        # new_saver = tf.train.import_meta_graph(
        #     '/mnt/research/projects/autoencoders/workspace/improved_sampler/experimentE/meandepth.e1/checkpoint-4.meta', import_scope='estimator')
        # new_saver.restore(sess, tf.train.latest_checkpoint('/mnt/research/projects/autoencoders/workspace/improved_sampler/experimentE/meandepth.e1'))
        #
        # # estimator_vars = tf.get_collection(tf.GraphKeys.GLOBAL_VARIABLES)
        # # print('estimator_vars:', estimator_vars)
        #
        # # print('all ops!')
        # # for op in tf.get_default_graph().get_operations():
        # #     if 'l8' in str(op.name):
        # #         print(str(op.name))
        #
        #
        # # sess.graph
        # # graph = tf.get_default_graph()
        # estimator_tower0 = sess.graph.as_graph_element('estimator/tower_0/model/l8/add').outputs[0]
        # estimator_tower1 = sess.graph.as_graph_element('estimator/tower_1/model/l8/add').outputs[0]
        # self.estimator_placeholder = sess.graph.as_graph_element('estimator/input_pipeline/Placeholder') #.outputs[0]
        # print('PLACEHOLDER:', self.estimator_placeholder)
        # print('estimator_tower0:', estimator_tower0)
        # print('estimator_tower1:', estimator_tower1)
        # estimator_tower0 = tf.stop_gradient(estimator_tower0)
        # estimator_tower1 = tf.stop_gradient(estimator_tower1)
        # sess.close()


        # foreach gpu...
        for x_y, scope, gpu_id in hem.tower_scope_range(x_y, args.n_gpus, args.batch_size):
            with tf.variable_scope('input_preprocess'):
                # split inputs and rescale
                x = hem.rescale(x_y[0], (0, 1), (-1, 1))
                y = hem.rescale(x_y[1], (0, 1), (-1, 1))


                # if args.g_arch == 'E2':
                y = hem.crop_to_bounding_box(y, 16, 16, 32, 32)
                y = tf.reshape(y, (-1, 1, 32, 32))
                x_loc = x_y[2]
                y_loc = x_y[3]
                scene_image = x_y[4]
                mean_depth = tf.stop_gradient(estimator.output_layer)
                # print('mean_depth_layer:', estimator.output_layer)
                # mean_depth = estimator(scene_image)
                # mean_depth = tf.expand_dims(mean_depth, axis=-1)
                # mean_depth = tf.expand_dims(mean_depth, axis=-1)

                mean_depth_channel = tf.stack([mean_depth] * 64, axis=2)
                mean_depth_channel = tf.stack([mean_depth_channel] * 64, axis=3)
                # mean_depth_channel = tf.squeeze(mean_depth_channel)
                # print('mean_depth_layer99:', mean_depth_channel)

                # mean_depth_channel = tf.ones_like(x_loc) * mean_depth




                # print('x', x)
                # print('x_loc', x_loc)
                # print('y_loc', y_loc)
                # print('mean_depth_channel', mean_depth_channel)
                x = tf.concat([x, x_loc, y_loc, mean_depth_channel], axis=1)
                # print('x shape:',  x)

                # create repeated image tensors for sampling
                x_sample = tf.stack([x[0]] * args.batch_size)
                y_sample = tf.stack([y[0]] * args.batch_size)
                # shuffled x for variance calculation
                x_shuffled = tf.random_shuffle(x)
                y_shuffled = y
                # noise vector for testing
                x_noise = tf.random_uniform(tf.stack([tf.Dimension(args.batch_size), x.shape[1], x.shape[2], x.shape[3]]), minval=-1.0, maxval=1.0)

            g_arch = {'E2': experimental_sampler.generatorE2}
            d_arch = {'E2': experimental_sampler.discriminatorE2}

            # create model
            with tf.variable_scope('generator'):
                g_func = g_arch[args.g_arch]
                g = g_func(x, args, reuse=(gpu_id > 0))
                g_sampler = g_func(x_sample, args, reuse=True)
                g_shuffle = g_func(x_shuffled, args, reuse=True)
                g_noise = g_func(x_noise, args, reuse=True)
            with tf.variable_scope('discriminator'):
                d_func = d_arch[args.d_arch]
                d_real, d_real_logits = d_func(x, y, args, reuse=(gpu_id > 0))
                d_fake, d_fake_logits = d_func(x, g, args, reuse=True)

            # calculate losses
            g_loss, d_loss = experimental_sampler.loss(d_real, d_real_logits, d_fake, d_fake_logits, x, g, y, None, args, reuse=(gpu_id > 0))
            # calculate gradients
            g_params = tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES, 'generator')
            d_params = tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES, 'discriminator')
            g_tower_grads.append(g_opt.compute_gradients(g_loss, var_list=g_params))
            d_tower_grads.append(d_opt.compute_gradients(d_loss, var_list=d_params))
            # only need one batchnorm update (ends up being updates for last tower)
            batchnorm_updates = tf.get_collection(tf.GraphKeys.UPDATE_OPS, scope)
            # TODO: do we need to do this update for batchrenorm? for instance renorm?

        # average and apply gradients
        g_grads = hem.average_gradients(g_tower_grads, check_numerics=args.check_numerics)
        d_grads = hem.average_gradients(d_tower_grads, check_numerics=args.check_numerics)
        g_apply_grads = g_opt.apply_gradients(g_grads, global_step=global_step)
        d_apply_grads = d_opt.apply_gradients(d_grads, global_step=global_step)

        # add summaries
        hem.summarize_losses()
        hem.summarize_gradients(g_grads, name='g_gradients')
        hem.summarize_gradients(d_grads, name='d_gradients')
        hem.summarize_layers('g_activations', [l for l in tf.get_collection('conv_layers') if 'generator' in l.name], montage=True)
        hem.summarize_layers('d_activations', [l for l in tf.get_collection('conv_layers') if 'discriminator' in l.name], montage=True)
        experimental_sampler.montage_summaries(x, y, g, x_sample, y_sample, g_sampler, x_noise, g_noise, x_shuffled, y_shuffled, g_shuffle, args)
        experimental_sampler.sampler_summaries(y_sample, g_sampler, g_noise, y_shuffled, g_shuffle, args)

        # training ops
        with tf.control_dependencies(batchnorm_updates):
            self.g_train_op = g_apply_grads
        self.d_train_op = d_apply_grads
        self.all_losses = hem.collection_to_dict(tf.get_collection('losses'))
Beispiel #8
0
    def __init__(self, x_y, args):
        # init/setup

        # wgan training
        if args.training_version == 'wgan':
            g_opt = tf.train.RMSPropOptimizer(args.g_lr)
            d_opt = tf.train.AdamOptimizer(args.d_lr)
        else:
            g_opt = tf.train.AdamOptimizer(args.g_lr, args.g_beta1, args.g_beta2)
            d_opt = tf.train.AdamOptimizer(args.d_lr, args.d_beta1, args.d_beta2)
        g_tower_grads = []
        d_tower_grads = []
        global_step = tf.train.get_global_step()

        self.x = []
        self.y = []
        self.y_hat = []
        self.g = []

        self.mean_image_placeholder = tf.placeholder(dtype=tf.float32, shape=(1, 29, 29))
        # self.var_image_placeholder = tf.placeholder(dtype=tf.float32, shape=(1, 29, 29))

        # foreach gpu...
        for x_y, scope, gpu_id in hem.tower_scope_range(x_y, args.n_gpus, args.batch_size):
            with tf.variable_scope('input_preprocess'):
                # split inputs and rescale
                x = tf.identity(x_y[0], name='tower_{}_x'.format(gpu_id))
                y = tf.identity(x_y[1], name='tower_{}_y'.format(gpu_id))

                # re-attach shape info
                x = tf.reshape(x, (args.batch_size, 3, 65, 65))
                # rescale from [0,1] to actual world depth
                y = y * 10.0
                y = hem.crop_to_bounding_box(y, 17, 17, 29, 29)
                # re-attach shape info
                y = tf.reshape(y, (args.batch_size, 1, 29, 29))
                y_bar = tf.reduce_mean(y, axis=[2, 3], keep_dims=True)
                y_bar = tf.identity(y_bar, name='tower_{}_y_bar'.format(gpu_id))


            # create model
            with tf.variable_scope('generator'):
                if args.model_version == 'baseline':
                    g = self.g_baseline(x, args, reuse=(gpu_id > 0))
                    g_0 = tf.zeros_like(g)
                    y_hat = g
                    y_0 = g_0
                elif args.model_version == 'mean_adjusted':
                    g = self.g_baseline(x, args, reuse=(gpu_id > 0))
                    g_0 = tf.zeros_like(g)
                    y_hat = g + y_bar
                    y_0 = g_0 + y_bar
                elif args.model_version == 'mean_provided':
                    g = self.g_mean_provided(x, y_bar, args, reuse=(gpu_id > 0))
                    g_0 = tf.zeros_like(g)
                    y_hat = g + y_bar
                    y_0 = g_0 + y_bar
                elif args.model_version == 'mean_provided2':
                    g = self.g_mean_provided2(x, y_bar, args, reuse=(gpu_id > 0))
                    g_0 = tf.zeros_like(g)
                    y_hat = g + y_bar
                    y_0 = g_0 + y_bar
                g = tf.identity(g, 'tower_{}_g'.format(gpu_id))
                g_0 = tf.identity(g_0, 'tower_{}_g0'.format(gpu_id))
                y_hat = tf.identity(y_hat, 'tower_{}_y_hat'.format(gpu_id))
                y_0 = tf.identity(y_0, 'tower_{}_y0'.format(gpu_id))


            with tf.variable_scope('discriminator'):
                if args.model_version == 'baseline':
                    d_fake, d_fake_logits = self.d_baseline(x, y_hat, args, reuse=(gpu_id > 0))
                    d_real, d_real_logits = self.d_baseline(x, y, args, reuse=True)
                elif args.model_version == 'mean_adjusted':
                    d_fake, d_fake_logits = self.d_baseline(x, y_hat - y_bar, args, reuse=(gpu_id > 0))
                    d_real, d_real_logits = self.d_baseline(x, y - y_bar, args, reuse=True)
                elif args.model_version == 'mean_provided':
                    d_fake, d_fake_logits = self.d_mean_provided(x, y_hat - y_bar, y_bar, args, reuse=(gpu_id > 0))
                    d_real, d_real_logits = self.d_mean_provided(x, y - y_bar, y_bar, args, reuse=True)
                elif args.model_version == 'mean_provided2':
                    d_fake, d_fake_logits = self.d_mean_provided2(x, y_hat - y_bar, y_bar, args, reuse=(gpu_id > 0))
                    d_real, d_real_logits = self.d_mean_provided2(x, y - y_bar, y_bar, args, reuse=True)

                d_fake = tf.identity(d_fake, 'tower_{}_d_fake'.format(gpu_id))
                d_real = tf.identity(d_real, 'tower_{}_d_real'.format(gpu_id))
                d_fake_logits = tf.identity(d_fake_logits, 'tower_{}_d_fake_logits'.format(gpu_id))
                d_real_logits = tf.identity(d_real_logits, 'tower_{}_d_real_logits'.format(gpu_id))

            self.g.append(g)
            self.y_hat.append(y_hat)
            self.y.append(y)
            self.x.append(x)

            # calculate losses
            g_loss, d_loss = self.loss(d_real, d_real_logits, d_fake, d_fake_logits, args, reuse=(gpu_id > 0))
            # calculate gradients
            g_params = tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES, 'generator')
            d_params = tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES, 'discriminator')
            g_tower_grads.append(g_opt.compute_gradients(g_loss, var_list=g_params))
            d_tower_grads.append(d_opt.compute_gradients(d_loss, var_list=d_params))

        # average and apply gradients
        g_grads = hem.average_gradients(g_tower_grads, check_numerics=args.check_numerics)
        d_grads = hem.average_gradients(d_tower_grads, check_numerics=args.check_numerics)
        g_apply_grads = g_opt.apply_gradients(g_grads, global_step=global_step)
        d_apply_grads = d_opt.apply_gradients(d_grads, global_step=global_step)

        # add summaries
        hem.summarize_losses()
        hem.summarize_gradients(g_grads, name='g_gradients')
        hem.summarize_gradients(d_grads, name='d_gradients')
        generator_layers = [l for l in tf.get_collection('conv_layers') if 'generator' in l.name]
        discriminator_layers = [l for l in tf.get_collection('conv_layers') if 'discriminator' in l.name]
        hem.summarize_layers('g_activations', generator_layers, montage=True)
        hem.summarize_layers('d_activations', discriminator_layers, montage=True)
        self.montage_summaries(x, y, g, y_hat, args)
        self.metric_summaries(x, y, g, y_hat, args, name='y_hat')
        self.metric_summaries(x, y, g_0, y_0, args, name='y_0')
        self.metric_summaries(x, y, g, self.mean_image_placeholder * 10.0, args, name='y_mean')


        # training ops
        if args.training_version == 'wgan':
            clip_D = [p.assign(tf.clip_by_value(p, -0.01, 0.01)) for p in d_params]
            clip_G = [p.assign(tf.clip_by_value(p, -0.01, 0.01)) for p in g_params]
            with tf.control_dependencies(clip_D):
                self.d_train_op = d_apply_grads
            with tf.control_dependencies(clip_G):
                self.g_train_op = g_apply_grads
        else:
            self.g_train_op = g_apply_grads
            self.d_train_op = d_apply_grads
        self.all_losses = hem.collection_to_dict(tf.get_collection('losses'))
Beispiel #9
0
def gan(x, args):
    """Initialize model.
        
    Args:
    x: Tensor, the real images.
    args: Argparse structure.
    """
    g_opt, d_opt = hem.init_optimizer(args), hem.init_optimizer(args)
    g_tower_grads, d_tower_grads = [], []

    x = hem.flatten(x)
    x = 2 * (x - 0.5)
    # rescale [0,1] to [-1,1] depending on model
    # if args.model in ['wgan', 'iwgan']:
    # x = 2 * (x - 0.5)

    for x, scope, gpu_id in hem.tower_scope_range(x, args.n_gpus,
                                                  args.batch_size):
        # model
        with tf.variable_scope('generator'):
            g = generator(args.batch_size,
                          args.latent_size,
                          args,
                          reuse=(gpu_id > 0))
        with tf.variable_scope('discriminator'):
            d_real = discriminator(x, args, reuse=(gpu_id > 0))
            d_fake = discriminator(g, args, reuse=True)
        # losses
        g_loss, d_loss = losses(x, g, d_fake, d_real, args)
        # compute gradients
        g_params = tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES,
                                     'generator')
        d_params = tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES,
                                     'discriminator')
        g_tower_grads.append(g_opt.compute_gradients(g_loss,
                                                     var_list=g_params))
        d_tower_grads.append(d_opt.compute_gradients(d_loss,
                                                     var_list=d_params))
        # only need one batchnorm update (ends up being updates for last tower)
        batchnorm_updates = tf.get_collection(tf.GraphKeys.UPDATE_OPS, scope)

    # summaries
    summaries(g, x, args)

    # average and apply gradients
    g_grads = hem.average_gradients(g_tower_grads)
    d_grads = hem.average_gradients(d_tower_grads)
    hem.summarize_gradients(g_grads + d_grads)
    global_step = tf.train.get_global_step()
    g_apply_grads = g_opt.apply_gradients(g_grads, global_step=global_step)
    d_apply_grads = d_opt.apply_gradients(d_grads, global_step=global_step)

    # training
    if args.model == 'gan':
        train_func = _train_gan(g_apply_grads, d_apply_grads,
                                batchnorm_updates)
    elif args.model == 'wgan':
        train_func = _train_wgan(g_apply_grads, g_params, d_apply_grads,
                                 d_params, batchnorm_updates)
    elif args.model == 'iwgan':
        train_func = _train_iwgan(g_apply_grads, d_apply_grads,
                                  batchnorm_updates)

    return train_func