Beispiel #1
0
def dc_criteo(dense_input, sparse_input, y_):

    feature_dimension = 33762577
    embedding_size = 8
    learning_rate = 0.001

    Embedding = init.random_normal([feature_dimension, embedding_size],
                                   stddev=0.01,
                                   name="snd_order_embedding")
    sparse_input = ad.embedding_lookup_op(Embedding, sparse_input)
    sparse_input = ad.array_reshape_op(sparse_input, (-1, 26 * embedding_size))

    ## dc_model
    x = ad.concat_op(sparse_input, dense_input, axis=1)

    input_dim = 26 * 8 + 13
    hidden_dim = input_dim
    residual_out = build_residual_layers(x,
                                         input_dim,
                                         hidden_dim,
                                         num_layers=5)

    W4 = init.random_normal([26 * embedding_size + 13, 1],
                            stddev=0.1,
                            name="W4")
    y = ad.matmul_op(residual_out, W4)
    y = ad.sigmoid_op(y)

    loss = ad.binarycrossentropy_op(y, y_)
    loss = ad.reduce_mean_op(loss, [0])
    opt = optimizer.SGDOptimizer(learning_rate=learning_rate)
    train_op = opt.minimize(loss)

    return loss, y, y_, train_op
Beispiel #2
0
def dfm_criteo(dense_input, sparse_input, y_):
    feature_dimension = 33762577
    embedding_size = 128
    learning_rate = 0.01

    # FM
    Embedding1 = init.random_normal([feature_dimension, 1],
                                    stddev=0.01,
                                    name="fst_order_embedding",
                                    ctx=ndarray.cpu(0))
    FM_W = init.random_normal([13, 1], stddev=0.01, name="dense_parameter")
    sparse_1dim_input = ad.embedding_lookup_op(Embedding1,
                                               sparse_input,
                                               ctx=ndarray.cpu(0))
    fm_dense_part = ad.matmul_op(dense_input, FM_W)
    fm_sparse_part = ad.reduce_sum_op(sparse_1dim_input, axes=1)
    """ fst order output"""
    y1 = fm_dense_part + fm_sparse_part

    Embedding2 = init.random_normal([feature_dimension, embedding_size],
                                    stddev=0.01,
                                    name="snd_order_embedding",
                                    ctx=ndarray.cpu(0))
    sparse_2dim_input = ad.embedding_lookup_op(Embedding2,
                                               sparse_input,
                                               ctx=ndarray.cpu(0))
    sparse_2dim_sum = ad.reduce_sum_op(sparse_2dim_input, axes=1)
    sparse_2dim_sum_square = ad.mul_op(sparse_2dim_sum, sparse_2dim_sum)

    sparse_2dim_square = ad.mul_op(sparse_2dim_input, sparse_2dim_input)
    sparse_2dim_square_sum = ad.reduce_sum_op(sparse_2dim_square, axes=1)
    sparse_2dim = sparse_2dim_sum_square + -1 * sparse_2dim_square_sum
    sparse_2dim_half = sparse_2dim * 0.5
    """snd order output"""
    y2 = ad.reduce_sum_op(sparse_2dim_half, axes=1, keepdims=True)

    #DNN
    flatten = ad.array_reshape_op(sparse_2dim_input, (-1, 26 * embedding_size))
    W1 = init.random_normal([26 * embedding_size, 256], stddev=0.01, name="W1")
    W2 = init.random_normal([256, 256], stddev=0.01, name="W2")
    W3 = init.random_normal([256, 1], stddev=0.01, name="W3")

    fc1 = ad.matmul_op(flatten, W1)
    relu1 = ad.relu_op(fc1)
    fc2 = ad.matmul_op(relu1, W2)
    relu2 = ad.relu_op(fc2)
    y3 = ad.matmul_op(relu2, W3)

    y4 = y1 + y2
    y = y4 + y3
    y = ad.sigmoid_op(y)

    loss = ad.binarycrossentropy_op(y, y_)
    loss = ad.reduce_mean_op(loss, [0])
    opt = optimizer.SGDOptimizer(learning_rate=learning_rate)
    train_op = opt.minimize(loss)

    return loss, y, y_, train_op
Beispiel #3
0
Datei: RNN.py Projekt: sj1104/Het
def rnn(x, y_):
    '''
    RNN model, for MNIST dataset.

    Parameters:
        x: Variable(hetu.gpu_ops.Node.Node), shape (N, dims)
        y_: Variable(hetu.gpu_ops.Node.Node), shape (N, num_classes)
    Return:
        loss: Variable(hetu.gpu_ops.Node.Node), shape (1,)
        y: Variable(hetu.gpu_ops.Node.Node), shape (N, num_classes)
    '''

    print("Building RNN model...")
    diminput = 28
    dimhidden = 128
    dimoutput = 10
    nsteps = 28

    weight1 = init.random_normal(shape=(diminput, dimhidden),
                                 stddev=0.1,
                                 name='rnn_weight1')
    bias1 = init.random_normal(shape=(dimhidden, ),
                               stddev=0.1,
                               name='rnn_bias1')
    weight2 = init.random_normal(shape=(dimhidden + dimhidden, dimhidden),
                                 stddev=0.1,
                                 name='rnn_weight2')
    bias2 = init.random_normal(shape=(dimhidden, ),
                               stddev=0.1,
                               name='rnn_bias2')
    weight3 = init.random_normal(shape=(dimhidden, dimoutput),
                                 stddev=0.1,
                                 name='rnn_weight3')
    bias3 = init.random_normal(shape=(dimoutput, ),
                               stddev=0.1,
                               name='rnn_bias3')
    last_state = ad.Variable(value=np.zeros((1, )).astype(np.float32),
                             name='initial_state',
                             trainable=False)

    for i in range(nsteps):
        cur_x = ad.slice_op(x, (0, i * diminput), (-1, diminput))
        h = ad.matmul_op(cur_x, weight1)
        h = h + ad.broadcastto_op(bias1, h)

        if i == 0:
            last_state = ad.broadcastto_op(last_state, h)
        s = ad.concat_op(h, last_state, axis=1)
        s = ad.matmul_op(s, weight2)
        s = s + ad.broadcastto_op(bias2, s)
        last_state = ad.relu_op(s)

    final_state = last_state
    x = ad.matmul_op(final_state, weight3)
    y = x + ad.broadcastto_op(bias3, x)
    loss = ad.softmaxcrossentropy_op(y, y_)
    loss = ad.reduce_mean_op(loss, [0])
    return loss, y
Beispiel #4
0
def neural_mf(user_input, item_input, y_, num_users, num_items):
    batch_size = 256
    embed_dim = 8
    layers = [64, 32, 16, 8]
    learning_rate = 0.01

    User_Embedding = init.random_normal(
        (num_users, embed_dim + layers[0] // 2),
        stddev=0.01,
        name="user_embed",
        ctx=ndarray.cpu(0))
    Item_Embedding = init.random_normal(
        (num_items, embed_dim + layers[0] // 2),
        stddev=0.01,
        name="item_embed",
        ctx=ndarray.cpu(0))
    # MLP_User_Embedding = init.random_normal((num_users, layers[0] // 2), stddev=0.01, name="mlp_user_embed", ctx=ndarray.cpu(0))
    # MLP_Item_Embedding = init.random_normal((num_items, layers[0] // 2), stddev=0.01, name="mlp_item_embed", ctx=ndarray.cpu(0))

    user_latent = ad.embedding_lookup_op(User_Embedding,
                                         user_input,
                                         ctx=ndarray.cpu(0))
    item_latent = ad.embedding_lookup_op(Item_Embedding,
                                         item_input,
                                         ctx=ndarray.cpu(0))

    mf_user_latent = ad.slice_op(user_latent, (0, 0), (-1, embed_dim))
    mlp_user_latent = ad.slice_op(user_latent, (0, embed_dim), (-1, -1))
    mf_item_latent = ad.slice_op(item_latent, (0, 0), (-1, embed_dim))
    mlp_item_latent = ad.slice_op(item_latent, (0, embed_dim), (-1, -1))

    # mf_user_latent = ad.embedding_lookup_op(MF_User_Embedding, user_input, ctx=ndarray.cpu(0))
    # mf_item_latent = ad.embedding_lookup_op(MF_Item_Embedding, item_input, ctx=ndarray.cpu(0))
    # mlp_user_latent = ad.embedding_lookup_op(MLP_User_Embedding, user_input, ctx=ndarray.cpu(0))
    # mlp_item_latent = ad.embedding_lookup_op(MLP_Item_Embedding, item_input, ctx=ndarray.cpu(0))

    W1 = init.random_normal((layers[0], layers[1]), stddev=0.1, name='W1')
    W2 = init.random_normal((layers[1], layers[2]), stddev=0.1, name='W2')
    W3 = init.random_normal((layers[2], layers[3]), stddev=0.1, name='W3')
    W4 = init.random_normal((embed_dim + layers[3], 1), stddev=0.1, name='W4')

    mf_vector = ad.mul_op(mf_user_latent, mf_item_latent)
    mlp_vector = ad.concat_op(mlp_user_latent, mlp_item_latent, axis=1)
    fc1 = ad.matmul_op(mlp_vector, W1)
    relu1 = ad.relu_op(fc1)
    fc2 = ad.matmul_op(relu1, W2)
    relu2 = ad.relu_op(fc2)
    fc3 = ad.matmul_op(relu2, W3)
    relu3 = ad.relu_op(fc3)
    concat_vector = ad.concat_op(mf_vector, relu3, axis=1)
    y = ad.matmul_op(concat_vector, W4)
    y = ad.sigmoid_op(y)
    loss = ad.binarycrossentropy_op(y, y_)
    loss = ad.reduce_mean_op(loss, [0])
    opt = optimizer.SGDOptimizer(learning_rate=learning_rate)
    # opt = optimizer.AdamOptimizer(learning_rate=learning_rate)
    train_op = opt.minimize(loss)
    return loss, y, train_op
Beispiel #5
0
def train_hetu(args):
    with open(os.path.join(args.path, "meta.yml"), 'rb') as f:
        meta = yaml.load(f.read(), Loader=yaml.FullLoader)
    hidden_layer_size = args.hidden_size
    num_epoch = args.num_epoch
    rank = int(os.environ["WORKER_ID"])
    nrank = int(os.environ["DMLC_NUM_WORKER"])
    ctx = ndarray.gpu(rank)

    x_ = ad.Variable(name="x_")
    y_ = ad.Variable(name="y_")
    mask_ = ad.Variable(name="mask_")
    gcn1 = GraphSage(meta["feature"], hidden_layer_size, activation="relu", dropout=0.1)
    gcn2 = GraphSage(2*hidden_layer_size, hidden_layer_size, activation="relu", dropout=0.1)

    x = gcn1(x_)
    x = gcn2(x)
    W = initializers.xavier_uniform(shape=(2*hidden_layer_size, meta["class"]))
    B = initializers.zeros(shape=(meta["class"],))
    x = ad.matmul_op(x, W)
    y = x + ad.broadcastto_op(B, x)
    loss = ad.softmaxcrossentropy_op(y, y_)
    loss = ad.mul_op(loss, mask_)
    loss = ad.reduce_mean_op(loss, [0])
    opt = optimizer.SGDOptimizer(0.1)
    train_op = opt.minimize(loss)
    executor = ad.Executor([loss, y, train_op], ctx=ctx, comm_mode='PS')
    distributed.ps_init(rank, nrank)

    batch_size = 4000
    with DistributedGraphSageSampler(args.path, batch_size, 2, 2, rank=rank, nrank=nrank) as sampler:
        epoch = 0
        nnodes = 0
        start = time.time()
        while True:
            g_sample, mask = sampler.sample()
            mp_val = mp_matrix(g_sample, ndarray.gpu(rank))
            feed_dict = {
                gcn1.mp : mp_val,
                gcn2.mp : mp_val,
                mask_ : ndarray.array(mask, ctx=ctx),
                x_ : ndarray.array(g_sample.x, ctx=ctx),
                y_ : ndarray.array(convert_to_one_hot(g_sample.y, max_val=g_sample.num_classes), ctx=ctx)
            }
            loss_val, y_predicted, _ = executor.run(feed_dict = feed_dict)
            y_predicted = y_predicted.asnumpy().argmax(axis=1)
            acc = ((y_predicted == g_sample.y) * mask).sum()
            distributed.ps_get_worker_communicator().BarrierWorker()
            nnodes += batch_size
            if nnodes > meta["partition"]["nodes"][rank]:
                nnodes = 0
                epoch += 1
                print("Epoch :", epoch, time.time() - start)
                print("Train accuracy:", acc/mask.sum())
                start = time.time()
                if epoch >= num_epoch:
                    break
Beispiel #6
0
def test_ReduceMean():

    X = ad.Variable(name="X")
    y = ad.reduce_mean_op(X, 1, keepdims=True)
    executor = ad.Executor([y], ctx=ctx)
    X_val = rand.normal(scale=0.1, size=(2, 2)).astype(np.float32)
    res = executor.run(feed_dict={X: X_val})
    Check(executor, res, [X], [y], [X_val])
    print(sys._getframe().f_code.co_name, 'pass!')
Beispiel #7
0
def wdl_criteo(dense, sparse, labels):
    batch_size = 128
    feature_dimension = 33762577
    embedding_size = 128
    learning_rate = 0.01
    if isinstance(dense, tuple):
        dense_input = dl.dataloader_op([[dense[0], batch_size, 'train'],
                                        [dense[1], batch_size, 'validate']])
        sparse_input = dl.dataloader_op([[sparse[0], batch_size, 'train'],
                                         [sparse[1], batch_size, 'validate']])
        y_ = dl.dataloader_op([[labels[0], batch_size, 'train'],
                               [labels[1], batch_size, 'validate']])
    else:
        dense_input = dl.dataloader_op([[dense, batch_size, 'train']])
        sparse_input = dl.dataloader_op([[sparse, batch_size, 'train']])
        y_ = dl.dataloader_op([[labels, batch_size, 'train']])
    print("Data loaded.")
    Embedding = init.random_normal([feature_dimension, embedding_size],
                                   stddev=0.01,
                                   name="snd_order_embedding",
                                   ctx=ndarray.cpu(0))
    sparse_input = ad.embedding_lookup_op(Embedding,
                                          sparse_input,
                                          ctx=ndarray.cpu(0))
    sparse_input = ad.array_reshape_op(sparse_input, (-1, 26 * embedding_size))

    #DNN
    flatten = dense_input
    W1 = init.random_normal([13, 256], stddev=0.01, name="W1")
    W2 = init.random_normal([256, 256], stddev=0.01, name="W2")
    W3 = init.random_normal([256, 256], stddev=0.01, name="W3")

    W4 = init.random_normal([256 + 26 * embedding_size, 1],
                            stddev=0.01,
                            name="W4")

    fc1 = ad.matmul_op(flatten, W1)
    relu1 = ad.relu_op(fc1)
    fc2 = ad.matmul_op(relu1, W2)
    relu2 = ad.relu_op(fc2)
    y3 = ad.matmul_op(relu2, W3)

    y4 = ad.concat_op(sparse_input, y3, axis=1)
    y = ad.matmul_op(y4, W4)
    y = ad.sigmoid_op(y)

    loss = ad.binarycrossentropy_op(y, y_)
    loss = ad.reduce_mean_op(loss, [0])
    opt = optimizer.SGDOptimizer(learning_rate=learning_rate)
    train_op = opt.minimize(loss)

    return loss, y, y_, train_op
Beispiel #8
0
def wdl_adult(X_deep, X_wide, y_):
    lr = 5 / 128
    dim_wide = 809
    dim_deep = 68

    W = init.random_normal([dim_wide+20, 2], stddev=0.1, name="W")
    W1 = init.random_normal([dim_deep, 50], stddev=0.1, name="W1")
    b1 = init.random_normal([50], stddev=0.1, name="b1")
    W2 = init.random_normal([50, 20], stddev=0.1, name="W2")
    b2 = init.random_normal([20], stddev=0.1, name="b2")

    #deep
    Embedding = []
    X_deep_input = None

    for i in range(8):
        Embedding_name = "Embedding_deep_" + str(i)
        Embedding.append(init.random_normal([50, 8], stddev=0.1, name=Embedding_name))
        now = ad.embedding_lookup_op(Embedding[i], X_deep[i])
        now = ad.array_reshape_op(now, (-1, 8))
        if X_deep_input is None:
            X_deep_input = now
        else:
            X_deep_input = ad.concat_op(X_deep_input, now, 1)

    for i in range(4):
        now = ad.array_reshape_op(X_deep[i + 8], (-1, 1))
        X_deep_input = ad.concat_op(X_deep_input, now, 1)

    mat1 = ad.matmul_op(X_deep_input, W1)
    add1 = mat1 + ad.broadcastto_op(b1, mat1)
    relu1= ad.relu_op(add1)
    dropout1 = relu1 #ad.dropout_op(relu1, 0.5)
    mat2 = ad.matmul_op(dropout1, W2)
    add2 = mat2 + ad.broadcastto_op(b2, mat2)
    relu2= ad.relu_op(add2)
    dropout2 = relu2 #ad.dropout_op(relu2, 0.5)
    dmodel=dropout2

    # wide
    wmodel = ad.concat_op(X_wide, dmodel, 1)
    wmodel = ad.matmul_op(wmodel, W)

    prediction = wmodel
    loss = ad.softmaxcrossentropy_op(prediction, y_)
    loss = ad.reduce_mean_op(loss, [0])

    opt = optimizer.SGDOptimizer(learning_rate=lr)
    train_op = opt.minimize(loss)

    return loss, prediction, y_, train_op
Beispiel #9
0
def alexnet(x, y_):
    '''
    AlexNet model, for MNIST dataset.

    Parameters:
        x: Variable(hetu.gpu_ops.Node.Node), shape (N, dims)
        y_: Variable(hetu.gpu_ops.Node.Node), shape (N, num_classes)
    Return:
        loss: Variable(hetu.gpu_ops.Node.Node), shape (1,)
        y: Variable(hetu.gpu_ops.Node.Node), shape (N, num_classes)
    '''

    print('Building AlexNet model...')
    x = ad.array_reshape_op(x, [-1, 1, 28, 28])
    x = conv_bn_relu_pool(x,
                          1,
                          32,
                          'alexnet_conv1',
                          with_relu=True,
                          with_pool=True)
    x = conv_bn_relu_pool(x,
                          32,
                          64,
                          'alexnet_conv2',
                          with_relu=True,
                          with_pool=True)
    x = conv_bn_relu_pool(x,
                          64,
                          128,
                          'alexnet_conv3',
                          with_relu=True,
                          with_pool=False)
    x = conv_bn_relu_pool(x,
                          128,
                          256,
                          'alexnet_conv4',
                          with_relu=True,
                          with_pool=False)
    x = conv_bn_relu_pool(x,
                          256,
                          256,
                          'alexnet_conv5',
                          with_relu=False,
                          with_pool=True)
    x = ad.array_reshape_op(x, (-1, 256 * 3 * 3))
    x = fc(x, (256 * 3 * 3, 1024), name='alexnet_fc1', with_relu=True)
    x = fc(x, (1024, 512), name='alexnet_fc2', with_relu=True)
    y = fc(x, (512, 10), name='alexnet_fc3', with_relu=False)
    loss = ad.softmaxcrossentropy_op(y, y_)
    loss = ad.reduce_mean_op(loss, [0])
    return loss, y
Beispiel #10
0
def train_hetu(args):
    with open(os.path.join(args.path, "meta.yml"), 'rb') as f:
        meta = yaml.load(f.read(), Loader=yaml.FullLoader)
    hidden_layer_size = args.hidden_size
    num_epoch = args.num_epoch
    rank = int(os.environ["WORKER_ID"])
    nrank = int(os.environ["DMLC_NUM_WORKER"])
    hosts, ports = load_ip_config(args.ip_config)
    ctx = ndarray.gpu(rank)
    distributed.grpc_init(hosts=hosts, ports=ports, rank=rank, nrank=nrank)

    x_ = ad.Variable(name="x_")
    y_ = ad.Variable(name="y_")
    gcn1 = GCN(meta["feature"], hidden_layer_size, activation="relu")
    gcn2 = GCN(hidden_layer_size, meta["class"])
    x = gcn1(x_)
    y = gcn2(x)
    loss = ad.softmaxcrossentropy_op(y, y_)
    loss = ad.reduce_mean_op(loss, [0])
    opt = optimizer.SGDOptimizer(0.1)
    train_op = opt.minimize(loss)
    executor = ad.Executor([loss, y, train_op], ctx=ctx, comm_mode='PS')

    def transform(graph):
        mp_val = mp_matrix(graph, ndarray.gpu(rank))
        return graph, mp_val
    with DistributedSubgraphSampler(args.path, 4000, 2, rank=rank, nrank=nrank ,transformer=transform, backend="grpc") as sampler:
        epoch = 0
        nnodes = 0
        start = time.time()
        while True:
            g_sample, mp_val = sampler.sample()
            feed_dict = {
                gcn1.mp : mp_val,
                gcn2.mp : mp_val,
                x_ : ndarray.array(g_sample.x, ctx=ctx),
                y_ : ndarray.array(convert_to_one_hot(g_sample.y, max_val=g_sample.num_classes), ctx=ctx)
            }
            loss_val, y_predicted, _ = executor.run(feed_dict = feed_dict)
            y_predicted = y_predicted.asnumpy().argmax(axis=1)
            acc = (y_predicted == g_sample.y).sum()
            distributed.ps_get_worker_communicator().BarrierWorker()
            nnodes += g_sample.num_nodes
            if nnodes > meta["partition"]["nodes"][rank]:
                nnodes = 0
                epoch += 1
                print("Epoch :", epoch, time.time() - start)
                print("Train accuracy:", acc/len(y_predicted))
                start = time.time()
                if epoch >= num_epoch:
                    break
Beispiel #11
0
def dc_criteo(dense, sparse, labels):

    batch_size = 128
    feature_dimension = 33762577
    embedding_size = 8
    learning_rate = 0.001
    if isinstance(dense, tuple):
        dense_input = dl.dataloader_op([[dense[0], batch_size, 'train'],
                                        [dense[1], batch_size, 'validate']])
        sparse_input = dl.dataloader_op([[sparse[0], batch_size, 'train'],
                                         [sparse[1], batch_size, 'validate']])
        y_ = dl.dataloader_op([[labels[0], batch_size, 'train'],
                               [labels[1], batch_size, 'validate']])
    else:
        dense_input = dl.dataloader_op([[dense, batch_size, 'train']])
        sparse_input = dl.dataloader_op([[sparse, batch_size, 'train']])
        y_ = dl.dataloader_op([[labels, batch_size, 'train']])
    print("Data loaded.")

    Embedding = init.random_normal([feature_dimension, embedding_size],
                                   stddev=0.01,
                                   name="snd_order_embedding")
    sparse_input = ad.embedding_lookup_op(Embedding, sparse_input)
    sparse_input = ad.array_reshape_op(sparse_input, (-1, 26 * embedding_size))

    ## dc_model
    x = ad.concat_op(sparse_input, dense_input, axis=1)

    input_dim = 26 * 8 + 13
    hidden_dim = input_dim
    residual_out = build_residual_layers(x,
                                         input_dim,
                                         hidden_dim,
                                         num_layers=5)

    W4 = init.random_normal([26 * embedding_size + 13, 1],
                            stddev=0.1,
                            name="W4")
    y = ad.matmul_op(residual_out, W4)
    y = ad.sigmoid_op(y)

    loss = ad.binarycrossentropy_op(y, y_)
    loss = ad.reduce_mean_op(loss, [0])
    opt = optimizer.SGDOptimizer(learning_rate=learning_rate)
    train_op = opt.minimize(loss)

    return loss, y, y_, train_op
Beispiel #12
0
def dcn_criteo(dense_input, sparse_input, y_):
    feature_dimension = 33762577
    embedding_size = 128
    learning_rate = 0.003

    Embedding = init.random_normal([feature_dimension, embedding_size],
                                   stddev=0.01,
                                   name="snd_order_embedding",
                                   ctx=ndarray.cpu(0))
    sparse_input = ad.embedding_lookup_op(Embedding,
                                          sparse_input,
                                          ctx=ndarray.cpu(0))
    sparse_input = ad.array_reshape_op(sparse_input, (-1, 26 * embedding_size))
    x = ad.concat_op(sparse_input, dense_input, axis=1)
    # Cross Network
    cross_output = build_cross_layer(x, num_layers=3)

    #DNN
    flatten = x
    W1 = init.random_normal([26 * embedding_size + 13, 256],
                            stddev=0.01,
                            name="W1")
    W2 = init.random_normal([256, 256], stddev=0.01, name="W2")
    W3 = init.random_normal([256, 256], stddev=0.01, name="W3")

    W4 = init.random_normal([256 + 26 * embedding_size + 13, 1],
                            stddev=0.01,
                            name="W4")

    fc1 = ad.matmul_op(flatten, W1)
    relu1 = ad.relu_op(fc1)
    fc2 = ad.matmul_op(relu1, W2)
    relu2 = ad.relu_op(fc2)
    y3 = ad.matmul_op(relu2, W3)

    y4 = ad.concat_op(cross_output, y3, axis=1)
    y = ad.matmul_op(y4, W4)
    y = ad.sigmoid_op(y)

    loss = ad.binarycrossentropy_op(y, y_)
    loss = ad.reduce_mean_op(loss, [0])
    opt = optimizer.SGDOptimizer(learning_rate=learning_rate)
    train_op = opt.minimize(loss)

    return loss, y, y_, train_op
Beispiel #13
0
Datei: MLP.py Projekt: sj1104/Het
def mlp(x, y_):
    '''
    MLP model, for MNIST dataset.

    Parameters:
        x: Variable(hetu.gpu_ops.Node.Node), shape (N, dims)
        y_: Variable(hetu.gpu_ops.Node.Node), shape (N, num_classes)
    Return:
        loss: Variable(hetu.gpu_ops.Node.Node), shape (1,)
        y: Variable(hetu.gpu_ops.Node.Node), shape (N, num_classes)
    '''

    print("Building MLP model...")
    x = fc(x, (784, 256), 'mlp_fc1', with_relu=True)
    x = fc(x, (256, 256), 'mlp_fc2', with_relu=True)
    y = fc(x, (256, 10), 'mlp_fc3', with_relu=False)
    loss = ad.softmaxcrossentropy_op(y, y_)
    loss = ad.reduce_mean_op(loss, [0])
    return loss, y
Beispiel #14
0
Datei: CNN.py Projekt: sj1104/Het
def cnn_3_layers(x, y_):
    '''
    3-layer-CNN model, for MNIST dataset.

    Parameters:
        x: Variable(hetu.gpu_ops.Node.Node), shape (N, dims)
        y_: Variable(hetu.gpu_ops.Node.Node), shape (N, num_classes)
    Return:
        loss: Variable(hetu.gpu_ops.Node.Node), shape (1,)
        y: Variable(hetu.gpu_ops.Node.Node), shape (N, num_classes)
    '''

    print('Building 3-layer-CNN model...')
    x = ad.array_reshape_op(x, [-1, 1, 28, 28])
    x = conv_relu_avg(x, (32, 1, 5, 5))
    x = conv_relu_avg(x, (64, 32, 5, 5))
    y = fc(x, (7 * 7 * 64, 10))
    loss = ad.softmaxcrossentropy_op(y, y_)
    loss = ad.reduce_mean_op(loss, [0])
    return loss, y
Beispiel #15
0
def test_reduce_mean(shape=(2, 3, 4), axes=[2]):
    ctx = ndarray.gpu(1)
    x = np.random.random(shape).astype(np.float32)
    ath_x = ad.Variable(name='x', value=x)
    ath_y = ad.reduce_mean_op(ath_x, axes, keepdims=False)
    ath_grad = ad.gradients(ath_y, [ath_x])[0]
    executor = ad.Executor([ath_y, ath_grad], ctx=ctx)
    ath_results = [var.asnumpy() for var in executor.run()]

    import tensorflow as tf
    tf_x = tf.convert_to_tensor(x)
    tf_y = tf.reduce_mean(tf_x, axes)
    tf_grad = tf.gradients(tf_y, tf_x)
    with tf.Session() as sess:
        sess.run(tf.global_variables_initializer())
        tf_results = sess.run([tf_y, tf_grad])
    
    np.testing.assert_allclose(ath_results[0], np.reshape(tf_results[0], ath_results[0].shape), rtol=1e-6)
    np.testing.assert_allclose(ath_results[1], np.reshape(tf_results[1], ath_results[1].shape), rtol=1e-6)
    print('Passed reduce mean op test with shape and axes ', shape, axes)
Beispiel #16
0
def logreg(x, y_):
    '''
    Logistic Regression model, for MNIST dataset.

    Parameters:
        x: Variable(hetu.gpu_ops.Node.Node), shape (N, dims)
        y_: Variable(hetu.gpu_ops.Node.Node), shape (N, num_classes)
    Return:
        loss: Variable(hetu.gpu_ops.Node.Node), shape (1,)
        y: Variable(hetu.gpu_ops.Node.Node), shape (N, num_classes)
    '''

    print("Build logistic regression model...")
    weight = init.zeros((784, 10), name='logreg_weight')
    bias = init.zeros((10, ), name='logreg_bias')
    x = ad.matmul_op(x, weight)
    y = x + ad.broadcastto_op(bias, x)
    loss = ad.softmaxcrossentropy_op(y, y_)
    loss = ad.reduce_mean_op(loss, [0])
    return loss, y
Beispiel #17
0
def vgg(x, y_, num_layers):
    '''
    VGG model, for CIFAR10 dataset.

    Parameters:
        x: Variable(hetu.gpu_ops.Node.Node), shape (N, C, H, W)
        y_: Variable(hetu.gpu_ops.Node.Node), shape (N, num_classes)
        num_layers: 16 or 19
    Return:
        loss: Variable(hetu.gpu_ops.Node.Node), shape (1,)
        y: Variable(hetu.gpu_ops.Node.Node), shape (N, num_classes)
    '''

    if num_layers == 16:
        print('Building VGG-16 model...')
        x = vgg_2block(x, 3, 64, 'vgg_block1')
        x = vgg_2block(x, 64, 128, 'vgg_block2')
        x = vgg_3block(x, 128, 256, 'vgg_block3')
        x = vgg_3block(x, 256, 512, 'vgg_block4')
        x = vgg_3block(x, 512, 512, 'vgg_block5')

    elif num_layers == 19:
        print('Building VGG-19 model...')
        x = vgg_2block(x, 3, 64, 'vgg_block1')
        x = vgg_2block(x, 64, 128, 'vgg_block2')
        x = vgg_4block(x, 128, 256, 'vgg_block3')
        x = vgg_4block(x, 256, 512, 'vgg_block4')
        x = vgg_4block(x, 512, 512, 'vgg_block5')

    else:
        assert False, 'VGG model should have 16 or 19 layers!'

    x = ad.array_reshape_op(x, (-1, 512))
    x = vgg_fc(x, 512, 4096, 'vgg_fc1')
    x = vgg_fc(x, 4096, 4096, 'vgg_fc2')
    y = vgg_fc(x, 4096, 10, 'vgg_fc3')

    loss = ad.softmaxcrossentropy_op(y, y_)
    loss = ad.reduce_mean_op(loss, [0])

    return loss, y
Beispiel #18
0
def lenet(x, y_):
    '''
    LeNet model, for MNIST dataset.

    Parameters:
        x: Variable(hetu.gpu_ops.Node.Node), shape (N, dims)
        y_: Variable(hetu.gpu_ops.Node.Node), shape (N, num_classes)
    Return:
        loss: Variable(hetu.gpu_ops.Node.Node), shape (1,)
        y: Variable(hetu.gpu_ops.Node.Node), shape (N, num_classes)
    '''

    print('Building LeNet model...')
    x = ad.array_reshape_op(x, (-1, 1, 28, 28))
    x = conv_pool(x, 1, 6, name='lenet_conv1')
    x = conv_pool(x, 6, 16, name='lenet_conv2')
    x = ad.array_reshape_op(x, (-1, 7 * 7 * 16))
    x = fc(x, (7 * 7 * 16, 120), name='lenet_fc1', with_relu=True)
    x = fc(x, (120, 84), name='lenet_fc2', with_relu=True)
    y = fc(x, (84, 10), name='lenet_fc3', with_relu=False)
    loss = ad.softmaxcrossentropy_op(y, y_)
    loss = ad.reduce_mean_op(loss, [0])
    return loss, y
Beispiel #19
0
def test_csrmm_op(executor_ctx):
    X = ad.Variable(name="X")
    W = ad.Variable(name="W")
    Y = ad.csrmm_op(X, W)
    Y_ = ad.Variable(name="Y_")
    loss = ad.softmaxcrossentropy_op(Y, Y_)
    loss = ad.reduce_mean_op(loss, [0])
    grads = ad.gradients(loss, [W, Y])
    
    executor = ad.Executor(
        [loss, grads[0], grads[1]], ctx=executor_ctx)
    
    rand = np.random.RandomState(seed=123)

    W_val = rand.normal(scale=0.1, size=[70000, 2]).astype(np.float32)
    if ndarray.is_gpu_ctx(executor_ctx):
        W_val = ndarray.array(W_val, ctx=executor_ctx)
    
    X_val = scipy.sparse.rand(500, 70000, density=1e-5,format='coo',dtype=np.float32)
    Y_val = np.random.uniform(0, 10, size=(500, 2)).astype(np.float32) 
    
    loss_val = executor.run(feed_dict={X: X_val, Y_: Y_val, W: W_val})
    
    if ndarray.is_gpu_ctx(executor_ctx):
        W_val = W_val.asnumpy()
    loss_val = [val.asnumpy() for val in loss_val]
    
    y_groundtruth = X_val.dot(W_val)
    loss_groundtruth = np.mean(
                -np.sum(Y_val * np.log(softmax_func(y_groundtruth)), axis=1), keepdims=True)
    Y_grad_groundtruth = (softmax_func(y_groundtruth) + -1 * Y_val) * np.ones(loss_groundtruth.shape) / 500
    W_grad_groundtruth = X_val.T.dot(Y_grad_groundtruth)

    np.testing.assert_allclose(loss_val[0], loss_groundtruth, rtol=1e-4)
    np.testing.assert_allclose(loss_val[1], W_grad_groundtruth, rtol=1e-4)
    np.testing.assert_allclose(loss_val[2], Y_grad_groundtruth, rtol=1e-4)
Beispiel #20
0
def resnet(x, y_, num_layers=18):
    '''
    ResNet model, for CIFAR10 dataset.

    Parameters:
        x: Variable(hetu.gpu_ops.Node.Node), shape (N, C, H, W)
        y_: Variable(hetu.gpu_ops.Node.Node), shape (N, num_classes)
        num_layers: 18 or 34
    Return:
        loss: Variable(hetu.gpu_ops.Node.Node), shape (1,)
        y: Variable(hetu.gpu_ops.Node.Node), shape (N, num_classes)
    '''

    base_size = 16

    x = conv2d(x,
               3,
               base_size,
               stride=1,
               padding=1,
               name='resnet_initial_conv')
    x = batch_norm_with_relu(x, base_size, 'resnet_initial_bn')

    if num_layers == 18:
        print("Building ResNet-18 model...")
        x = resnet_block(x,
                         base_size,
                         num_blocks=2,
                         is_first=True,
                         name='resnet_block1')
        x = resnet_block(x,
                         base_size,
                         num_blocks=2,
                         is_first=False,
                         name='resnet_block2')
        x = resnet_block(x,
                         2 * base_size,
                         num_blocks=2,
                         is_first=False,
                         name='resnet_block3')
        x = resnet_block(x,
                         4 * base_size,
                         num_blocks=2,
                         is_first=False,
                         name='resnet_block4')
    elif num_layers == 34:
        print("Building ResNet-34 model...")
        x = resnet_block(x,
                         base_size,
                         num_blocks=3,
                         is_first=True,
                         name='resnet_block1')
        x = resnet_block(x,
                         base_size,
                         num_blocks=4,
                         is_first=False,
                         name='resnet_block2')
        x = resnet_block(x,
                         2 * base_size,
                         num_blocks=6,
                         is_first=False,
                         name='resnet_block3')
        x = resnet_block(x,
                         4 * base_size,
                         num_blocks=3,
                         is_first=False,
                         name='resnet_block4')
    else:
        assert False, "Number of layers should be 18 or 34 !"

    x = batch_norm_with_relu(x, 8 * base_size, 'resnet_final_bn')
    x = ad.array_reshape_op(x, (-1, 128 * base_size))
    y = fc(x, (128 * base_size, 10), name='resnet_final_fc')
    # here we don't use cudnn for softmax crossentropy to avoid overflows
    loss = ad.softmaxcrossentropy_op(y, y_, use_cudnn=False)
    loss = ad.reduce_mean_op(loss, [0])
    return loss, y
Beispiel #21
0
def wdl_adult(whatever):
    batch_size = 128
    lr=5
    dim_wide = 809

    lr_ = lr / batch_size
    dim_deep = 68

    from .load_data import load_adult_data
    x_train_deep, x_train_wide, y_train, x_test_deep, x_test_wide, y_test = load_adult_data()

    W = init.random_normal([dim_wide+20, 2], stddev=0.1, name="W")
    W1 = init.random_normal([dim_deep, 50], stddev=0.1, name="W1")
    b1 = init.random_normal([50], stddev=0.1, name="b1")
    W2 = init.random_normal([50, 20], stddev=0.1, name="W2")
    b2 = init.random_normal([20], stddev=0.1, name="b2")

    X_wide = dl.dataloader_op([
        [x_train_wide, batch_size, 'train'],
        [x_test_wide, batch_size, 'validate'],
    ])
    y_ = dl.dataloader_op([
        [y_train, batch_size, 'train'],
        [y_test, batch_size, 'validate'],
    ])

    #deep
    Embedding = []
    X_deep = []
    X_deep_input = None

    for i in range(8):
        X_deep_name = "x_deep_" + str(i)
        Embedding_name = "Embedding_deep_" + str(i)
        X_deep.append(dl.dataloader_op([
            [x_train_deep[:,i], batch_size, 'train'],
            [x_test_deep[:,i], batch_size, 'validate'],
        ]))
        Embedding.append(init.random_normal([50, 8], stddev=0.1, name=Embedding_name))
        now = ad.embedding_lookup_op(Embedding[i], X_deep[i])
        now = ad.array_reshape_op(now, (-1, 8))
        if X_deep_input is None:
            X_deep_input = now
        else:
            X_deep_input = ad.concat_op(X_deep_input, now, 1)

    for i in range(4):
        X_deep_name = "x_deep_" + str(8+i)
        X_deep.append(dl.dataloader_op([
            [x_train_deep[:,8+i], batch_size, 'train'],
            [x_test_deep[:,8+i], batch_size, 'validate'],
        ]))
        now = ad.array_reshape_op(X_deep[i + 8], (batch_size, 1))
        X_deep_input = ad.concat_op(X_deep_input, now, 1)

    mat1 = ad.matmul_op(X_deep_input, W1)
    add1 = mat1 + ad.broadcastto_op(b1, mat1)
    relu1= ad.relu_op(add1)
    dropout1 = relu1 #ad.dropout_op(relu1, 0.5)
    mat2 = ad.matmul_op(dropout1, W2)
    add2 = mat2 + ad.broadcastto_op(b2, mat2)
    relu2= ad.relu_op(add2)
    dropout2 = relu2 #ad.dropout_op(relu2, 0.5)
    dmodel=dropout2

    # wide
    wmodel = ad.concat_op(X_wide, dmodel, 1)
    wmodel = ad.matmul_op(wmodel, W)

    prediction = wmodel
    loss = ad.softmaxcrossentropy_op(prediction, y_)
    loss = ad.reduce_mean_op(loss, [0])

    opt = optimizer.SGDOptimizer(learning_rate=lr_)
    train_op = opt.minimize(loss)

    return loss, prediction, y_, train_op
Beispiel #22
0
def train_main(args):
    with open(os.path.join(args.path, "meta.yml"), 'rb') as f:
        meta = yaml.load(f.read(), Loader=yaml.FullLoader)
    hidden_layer_size = args.hidden_size
    num_epoch = args.num_epoch
    rank = ad.get_worker_communicate().rank()
    nrank = int(os.environ["DMLC_NUM_WORKER"])
    ctx = ndarray.gpu(rank % args.num_local_worker)
    embedding_width = args.hidden_size
    extract_width = embedding_width * (meta["feature"] - 1)

    y_ = dl.GNNDataLoaderOp(lambda g: ndarray.array(
        convert_to_one_hot(g.y, max_val=g.num_classes), ctx=ndarray.cpu()))
    mask_ = ad.Variable(name="mask_")
    gcn1 = GCN(extract_width, hidden_layer_size, activation="relu")
    gcn2 = GCN(hidden_layer_size, meta["class"])
    index = dl.GNNDataLoaderOp(
        lambda g: ndarray.array(g.x[:, 0:-1], ctx=ndarray.cpu()),
        ctx=ndarray.cpu())
    embedding = initializers.random_normal([meta["idx_max"], embedding_width],
                                           stddev=0.1)
    embed = ad.embedding_lookup_op(embedding, index)
    embed = ad.array_reshape_op(embed, (-1, extract_width))
    # embed = ad.reduce_mean_op(embed, axes=1)
    # x = ad.concat_op(x_, embed, axis=1)
    x = gcn1(embed)
    y = gcn2(x)
    loss = ad.softmaxcrossentropy_op(y, y_)
    train_loss = loss * mask_
    train_loss = ad.reduce_mean_op(train_loss, [0])
    opt = optimizer.SGDOptimizer(args.learning_rate)
    train_op = opt.minimize(train_loss)
    ad.worker_init()
    distributed.ps_init(rank, nrank)

    ngraph = meta["partition"]["nodes"][rank] // args.batch_size
    graphs = prepare_data(ngraph)
    idx = 0
    g_sample, mp_val, mask, mask_eval = graphs[idx]
    idx = (idx + 1) % ngraph
    dl.GNNDataLoaderOp.step(g_sample)
    dl.GNNDataLoaderOp.step(g_sample)
    epoch = 0
    nnodes = 0
    executor = ad.Executor([loss, y, train_op],
                           ctx=ctx,
                           comm_mode='PS',
                           use_sparse_pull=False,
                           cstable_policy=args.cache)
    while True:
        g_sample_nxt, mp_val_nxt, mask_nxt, mask_eval_nxt = graphs[idx]
        idx = (idx + 1) % ngraph
        dl.GNNDataLoaderOp.step(g_sample_nxt)
        feed_dict = {gcn1.mp: mp_val, gcn2.mp: mp_val, mask_: mask}
        loss_val, y_predicted, _ = executor.run(feed_dict=feed_dict)
        y_predicted = y_predicted.asnumpy().argmax(axis=1)

        acc = np.sum((y_predicted == g_sample.y) * mask_eval)
        train_acc = np.sum((y_predicted == g_sample.y) * mask)
        stat.update(acc, mask_eval.sum(),
                    np.sum(loss_val.asnumpy() * mask_eval) / mask_eval.sum())
        stat.update_train(train_acc, mask.sum(),
                          np.sum(loss_val.asnumpy() * mask) / mask.sum())

        # distributed.ps_get_worker_communicator().BarrierWorker()
        nnodes += mask.sum() + mask_eval.sum()
        if nnodes > meta["partition"]["nodes"][rank]:
            nnodes = 0
            epoch += 1
            if rank == 0:
                stat.print(epoch)
            if epoch >= num_epoch:
                break
        g_sample, mp_val, mask, mask_eval = g_sample_nxt, mp_val_nxt, mask_nxt, mask_eval_nxt
Beispiel #23
0
def lstm(x, y_):
    '''
    LSTM model, for MNIST dataset.

    Parameters:
        x: Variable(hetu.gpu_ops.Node.Node), shape (N, dims)
        y_: Variable(hetu.gpu_ops.Node.Node), shape (N, num_classes)
    Return:
        loss: Variable(hetu.gpu_ops.Node.Node), shape (1,)
        y: Variable(hetu.gpu_ops.Node.Node), shape (N, num_classes)
    '''

    print("Building LSTM model...")
    diminput = 28
    dimhidden = 128
    dimoutput = 10
    nsteps = 28

    forget_gate_w = init.random_normal(shape=(diminput, dimhidden),
                                       stddev=0.1,
                                       name="lstm_forget_gate_w")
    forget_gate_u = init.random_normal(shape=(dimhidden, dimhidden),
                                       stddev=0.1,
                                       name="lstm_forget_gate_u")
    forget_gate_b = init.random_normal(shape=(dimhidden, ),
                                       stddev=0.1,
                                       name="lstm_forget_gate_b")
    input_gate_w = init.random_normal(shape=(diminput, dimhidden),
                                      stddev=0.1,
                                      name="lstm_input_gate_w")
    input_gate_u = init.random_normal(shape=(dimhidden, dimhidden),
                                      stddev=0.1,
                                      name="lstm_input_gate_u")
    input_gate_b = init.random_normal(shape=(dimhidden, ),
                                      stddev=0.1,
                                      name="lstm_input_gate_b")
    output_gate_w = init.random_normal(shape=(diminput, dimhidden),
                                       stddev=0.1,
                                       name="lstm_output_gate_w")
    output_gate_u = init.random_normal(shape=(dimhidden, dimhidden),
                                       stddev=0.1,
                                       name="lstm_output_gate_u")
    output_gate_b = init.random_normal(shape=(dimhidden, ),
                                       stddev=0.1,
                                       name="lstm_output_gate_b")
    tanh_w = init.random_normal(shape=(diminput, dimhidden),
                                stddev=0.1,
                                name="lstm_tanh_w")
    tanh_u = init.random_normal(shape=(dimhidden, dimhidden),
                                stddev=0.1,
                                name="lstm_tanh_u")
    tanh_b = init.random_normal(shape=(dimhidden, ),
                                stddev=0.1,
                                name="lstm_tanh_b")
    out_weights = init.random_normal(shape=(dimhidden, dimoutput),
                                     stddev=0.1,
                                     name="lstm_out_weight")
    out_bias = init.random_normal(shape=(dimoutput, ),
                                  stddev=0.1,
                                  name="lstm_out_bias")
    initial_state = ad.Variable(value=np.zeros((1, )).astype(np.float32),
                                name='initial_state',
                                trainable=False)

    for i in range(nsteps):
        cur_x = ad.slice_op(x, (0, i * diminput), (-1, diminput))
        # forget gate
        if i == 0:
            temp = ad.matmul_op(cur_x, forget_gate_w)
            last_c_state = ad.broadcastto_op(initial_state, temp)
            last_h_state = ad.broadcastto_op(initial_state, temp)
            cur_forget = ad.matmul_op(last_h_state, forget_gate_u) + temp
        else:
            cur_forget = ad.matmul_op(last_h_state,
                                      forget_gate_u) + ad.matmul_op(
                                          cur_x, forget_gate_w)
        cur_forget = cur_forget + ad.broadcastto_op(forget_gate_b, cur_forget)
        cur_forget = ad.sigmoid_op(cur_forget)
        # input gate
        cur_input = ad.matmul_op(last_h_state, input_gate_u) + ad.matmul_op(
            cur_x, input_gate_w)
        cur_input = cur_input + ad.broadcastto_op(input_gate_b, cur_input)
        cur_input = ad.sigmoid_op(cur_input)
        # output gate
        cur_output = ad.matmul_op(last_h_state, output_gate_u) + ad.matmul_op(
            cur_x, output_gate_w)
        cur_output = cur_output + ad.broadcastto_op(output_gate_b, cur_output)
        cur_output = ad.sigmoid_op(cur_output)
        # tanh
        cur_tanh = ad.matmul_op(last_h_state, tanh_u) + ad.matmul_op(
            cur_x, tanh_w)
        cur_tanh = cur_tanh + ad.broadcastto_op(tanh_b, cur_tanh)
        cur_tanh = ad.tanh_op(cur_tanh)

        last_c_state = ad.mul_op(last_c_state, cur_forget) + ad.mul_op(
            cur_input, cur_tanh)
        last_h_state = ad.tanh_op(last_c_state) * cur_output

    x = ad.matmul_op(last_h_state, out_weights)
    y = x + ad.broadcastto_op(out_bias, x)
    loss = ad.softmaxcrossentropy_op(y, y_)
    loss = ad.reduce_mean_op(loss, [0])
    return loss, y