Beispiel #1
0
    def fitU(self, Rparams = 'default', Uparams = 'default'):
        if Uparams=='default':
            Uparams = sym_to_vec(self.uMat)
        else:
            Uparams = Uparams
        if Rparams == 'default':
            angl, axxx = Rotations.angleAxisOfRotMat(self.rMat)
            Rparams = (angl*axxx).flatten()
        else:
            Rparams = Rparams
            
        
        optResults = optimize.leastsq(self._fitU_objFunc_lsq, x0 = Uparams, args = (Rparams, self.planeData.wavelength), xtol=1e-5, ftol=1e-5, full_output = 1)
        
        Uparams = optResults[0]
        U = vec_to_sym(Uparams)
        
                
        print "refined stretch matrix: \n%g, %g, %g\n%g, %g, %g\n%g, %g, %g\n" \
              % (U[0, 0], U[0, 1], U[0, 2], \
                 U[1, 0], U[1, 1], U[1, 2], \
                 U[2, 0], U[2, 1], U[2, 2], )



        self.uMat = U
Beispiel #2
0
    def fitRotationStar_angle_weights(self, Rparams = 'default', Uparams = 'default', report = True, weighting = True, evaluate = False):
        """
        uses F*N = \alpha n to refine rotation
        """
        def _fitR_residual(angles, r0, Fmat, wavelength):
            Cmat = dot(Fmat.T,Fmat)
            rI = makeARecipVector(angles,wavelength)
            n = Unit(rI)
            N = Unit(r0)
            alpha_ = sqrt(Inner_Prod(Star(Cmat),N,N))
            r_i = Inner_Prod(Star(Fmat),n,N) - alpha_
            return r_i
        
        def _fitRotation_lsq(Rparams, gI_spots, U,wavelength):
            
            out = []
            Rmat = Rotations.rotMatOfExpMap(Rparams)
            Fmat = dot(Rmat,U)
            for gI,spot in gI_spots:
                try:
                    angCOM, angCOM_unc = spot.angCOM(useFit=True, getUncertainties=True)
                except RuntimeError:
                    continue
                r_i = _fitR_residual(angCOM.flatten(),gI, Fmat, wavelength)
                if weighting:
                    weight = uncertainty_analysis.propagateUncertainty(_fitR_residual, angCOM_unc, 1e-8,angCOM.flatten(),gI,Fmat,wavelength)
                    #print 'Rotation using weight', weight, r_i, r_i/weight, angCOM_unc
                else:
                    weight = 1.
                out.append(r_i/weight)
            return num.array(out)
        
        if Rparams == 'default':
            angl,axxx = Rotations.angleAxisOfRotMat(self.rMat)
            Rparams = (angl*axxx).flatten()
        else:
            Rparams = Rparams
        if Uparams=='default':
            Uparams = sym_to_vec(self.uMat)
        else:
            Uparams = Uparams

        self.fitGrainSpotUncertainties()
        gI_spots = self.associateRecipVector_Spots()
        U = vec_to_sym(Uparams)
        wavelength = self.planeData.wavelength
        if evaluate:
            return _fitRotation_lsq(Rparams,gI_spots,U,wavelength)
        
        optResults = optimize.leastsq(_fitRotation_lsq, x0 = Rparams, args = (gI_spots, U, wavelength), full_output = 1)
        r1 = optResults[0]
        U1 = Rotations.rotMatOfExpMap(r1)
        if report:
            print "refined orientation matrix: \n%g, %g, %g\n%g, %g, %g\n%g, %g, %g\n" \
                  % (U1[0, 0], U1[0, 1], U1[0, 2], \
                     U1[1, 0], U1[1, 1], U1[1, 2], \
                     U1[2, 0], U1[2, 1], U1[2, 2], )
        
        self.rMat = U1
        return optResults
Beispiel #3
0
    def fitRotation_Angles_(self, Rparams = 'default', Uparams = 'default', report = True, weighting = True, evaluate = False):
        """
        """
        if Rparams == 'default':
            angl,axxx = Rotations.angleAxisOfRotMat(self.rMat)
            Rparams = (angl*axxx).flatten()
        else:
            Rparams = Rparams
        if Uparams=='default':
            Uparams = sym_to_vec(self.uMat)
        else:
            Uparams = Uparams
            
        U = vec_to_sym(Uparams)

        def _lsq_Rotation(Rparams, U, weighting = True):
            return self.fitAngles_lsq(Rparams, U, weighting)
        if evaluate:
            return _lsq_Rotation(Rparams,U,weighting)
        optResults = optimize.leastsq(_lsq_Rotation, x0 = Rparams, args = (U,weighting), full_output = 1)
        r1 = optResults[0]
        U1 = Rotations.rotMatOfExpMap(r1)
        if report:
            print "refined orientation matrix: \n%g, %g, %g\n%g, %g, %g\n%g, %g, %g\n" \
                  % (U1[0, 0], U1[0, 1], U1[0, 2], \
                     U1[1, 0], U1[1, 1], U1[1, 2], \
                     U1[2, 0], U1[2, 1], U1[2, 2], )
        
        # reset pVec in self
        self.rMat = U1
        return optResults
Beispiel #4
0
    def fitU_Angles_(self, Rparams = 'default', Uparams = 'default', weighting = True, report = True,evaluate = False):
        if Uparams=='default':
            Uparams = sym_to_vec(self.uMat)
        else:
            Uparams = Uparams
        if Rparams == 'default':
            angl, axxx = Rotations.angleAxisOfRotMat(self.rMat)
            Rparams = (angl*axxx).flatten()
        else:
            Rparams = Rparams

        def _lsq_U(Uparams, Rparams):
            U = vec_to_sym(Uparams)
            return self.fitAngles_lsq(Rparams, U, weighting)
        if evaluate:
            return _lsq_U(Uparams, Rparams, weighting)
        optResults = optimize.leastsq(_lsq_U, x0 = Uparams, args = Rparams, full_output = 1)
        r1 = optResults[0]
        U1 = vec_to_sym(r1)
        if report:
            print "refined U matrix: \n%g, %g, %g\n%g, %g, %g\n%g, %g, %g\n" \
                  % (U1[0, 0], U1[0, 1], U1[0, 2], \
                     U1[1, 0], U1[1, 1], U1[1, 2], \
                     U1[2, 0], U1[2, 1], U1[2, 2], )
        self.uMat = U1
        return optResults
Beispiel #5
0
    def fitRotation(self, Rparams = 'default', Uparams = 'default', report = True,evaluate = False):
        """
        uses F*N = \alpha n to refine rotation
        """
        if Rparams == 'default':
            angl,axxx = Rotations.angleAxisOfRotMat(self.rMat)
            Rparams = (angl*axxx).flatten()
        else:
            Rparams = Rparams
        if Uparams=='default':
            Uparams = sym_to_vec(self.uMat)
        else:
            Uparams = Uparams

        def _fitRotation_lsq(Rparams, vecs, U):
            out = []
            Rmat = Rotations.rotMatOfExpMap(Rparams)
            Fmat = dot(Rmat,U)
            Cmat = dot(Fmat.T,Fmat)
            for r0,rd in vecs:
                N = Unit(r0)
                n = Unit(rd)
                alpha_ = sqrt(Inner_Prod(Star(Cmat),N,N))
                r_i = Inner_Prod(Star(Fmat),n,N) - alpha_
                out.append(r_i)
            return num.array(out)

        gI_rIs = self.associateRecipVectors()
        U = vec_to_sym(Uparams)
        if evaluate:
            return _fitRotation_lsq(Rparams,gI_rIs,U)
        
        optResults = optimize.leastsq(_fitRotation_lsq, x0 = Rparams, args = (gI_rIs, U), full_output = 1)
        
        r1 = optResults[0]
        U1 = Rotations.rotMatOfExpMap(r1)
        if report:
            print "refined orientation matrix: \n%g, %g, %g\n%g, %g, %g\n%g, %g, %g\n" \
                  % (U1[0, 0], U1[0, 1], U1[0, 2], \
                     U1[1, 0], U1[1, 1], U1[1, 2], \
                     U1[2, 0], U1[2, 1], U1[2, 2], )
        
        # reset pVec in self
        self.rMat = U1
        return optResults
Beispiel #6
0
    def fitF(self):
        def _fitF(FParams, vecs):
            Rparams = FParams[0:3]
            Uparams = FParams[3:9]
            
            rMat = Rotations.rotMatOfExpMap(Rparams)
            uMat = vec_to_sym(Uparams)
            F = dot(rMat,uMat)
            FinvT = inv(F).T 

            out = []
            for r0,rd in vecs:
                diff = dot(FinvT,r0) - rd
                out.append(diff[0])
                out.append(diff[1])
                out.append(diff[2])
            return num.array(out)
        
        gI_rIs = self.associateRecipVectors()
        angle,axxx = Rotations.angleAxisOfRotMat(self.rMat)
        Rparams = (angle*axxx).flatten()
        Uparams = sym_to_vec(self.uMat)
        Fparams = []
        Fparams.extend(list(Rparams))
        Fparams.extend(list(Uparams))

        optResults = optimize.leastsq(_fitF, x0 = Fparams, args = gI_rIs, full_output = 1)
        Rparams = optResults[0][0:3]
        Uparams = optResults[0][3:9]
        rMat = Rotations.rotMatOfExpMap(Rparams)
        uMat = vec_to_sym(Uparams)
        F = dot(rMat,uMat)
                
        print 'finalF'
        print F
        
        R_,U = polarDecomposition(F)
        print R_,'\n',U
        return optResults