def _create_vehicles(self, parked_probability=0.75):
        """
            Create some new random vehicles of a given type, and add them on the road.
        """

        self.vehicle = Vehicle(self.road, self.vehicle_starting, 2 * np.pi * self.np_random.rand(), 0)
        self.road.vehicles.append(self.vehicle)

        goal_position = [self.np_random.choice([-2 * self.spots - 10, 2 * self.spots + 10]), 0]
        self.goal = Obstacle(self.road, goal_position, heading=0)
        self.goal.COLLISIONS_ENABLED = False
        self.road.vehicles.insert(0, self.goal)

        vehicles_type = utils.class_from_path(self.config["other_vehicles_type"])
        for i in range(self.config["vehicles_count"]):
            is_parked = self.np_random.rand() <= parked_probability
            if not is_parked:
                # Just an effort to spread the vehicles out
                idx = self.np_random.randint(0, self.num_middle_lanes)
                longitudinal = (i * 5) - (self.x_range / 8) * self.np_random.randint(-1, 1)
                self.road.vehicles.append(
                    vehicles_type.make_on_lane(self.road, ("d", "e", idx), longitudinal, velocity=2))
            else:
                lane = ("a", "b", i) if self.np_random.rand() >= 0.5 else ("b", "c", i)
                self.road.vehicles.append(Vehicle.make_on_lane(self.road, lane, 4, velocity=0))

        for v in self.road.vehicles:  # Prevent early collisions
            if v is not self.vehicle and np.linalg.norm(v.position - self.vehicle.position) < 20:
                self.road.vehicles.remove(v)
def test_step():
    v = Vehicle(road=None, position=[0, 0], velocity=20, heading=0)
    for _ in range(2*FPS):
        v.step(dt=1/FPS)
    assert v.position[0] == pytest.approx(40)
    assert v.position[1] == pytest.approx(0)
    assert v.velocity == pytest.approx(20)
    assert v.heading == pytest.approx(0)
def test_act():
    v = Vehicle(road=None, position=[0, 0], velocity=20, heading=0)
    v.act({'acceleration': 1, 'steering': 0})
    for _ in range(1 * FPS):
        v.step(dt=1/FPS)
    assert v.velocity == pytest.approx(21)

    v.act({'acceleration': 0, 'steering': 0.5})
    for _ in range(1 * FPS):
        v.step(dt=1/FPS)
    assert v.velocity == pytest.approx(21)
    assert v.position[1] > 0
    def _create_vehicles(self):
        """
            Create some new random vehicles of a given type, and add them on the road.
        """
        self.vehicle = Vehicle(self.road, [0, 0],
                               2 * np.pi * self.np_random.rand(), 0)
        self.road.vehicles.append(self.vehicle)

        lane = self.np_random.choice(self.road.network.lanes_list())
        self.goal = Obstacle(self.road,
                             lane.position(lane.length / 2, 0),
                             heading=lane.heading)
        self.goal.COLLISIONS_ENABLED = False
        self.road.vehicles.insert(0, self.goal)
def test():
    from highway_env.vehicle.dynamics import Vehicle
    r = None
    v = Vehicle(r, [0, 0], 0, 20)
    v.dump()
    v.dump()
    v.dump()
    v.dump()
    print(v.get_log())
Beispiel #6
0
    def _create_vehicles(self):
        """
            Create some new random vehicles of a given type, and add them on the road.
        """
        self.vehicle = Vehicle.create_random(
            self.road, 25, spacing=self.config["initial_spacing"])
        self.road.vehicles.append(self.vehicle)

        vehicles_type = utils.class_from_path(
            self.config["other_vehicles_type"]
        )  # IDM from the config: can change
        for _ in range(self.config["vehicles_count"]):
            self.road.vehicles.append(vehicles_type.create_random(self.road))
def test_front():
    r = Road(RoadNetwork.straight_road_network(1))
    v1 = Vehicle(road=r, position=[0, 0], velocity=20)
    v2 = Vehicle(road=r, position=[10, 0], velocity=10)
    r.vehicles.extend([v1, v2])

    assert v1.lane_distance_to(v2) == pytest.approx(10)
    assert v2.lane_distance_to(v1) == pytest.approx(-10)
class ParkingEnv(AbstractEnv, GoalEnv):
    """
        A continuous control environment.

        It implements a reach-type task, where the agent observes their position and velocity and must
        control their acceleration and steering so as to reach a given goal.

        Credits to Munir Jojo-Verge for the idea and initial implementation.
    """

    STEERING_RANGE = np.pi / 4
    ACCELERATION_RANGE = 5.0

    OBS_SCALE = 100
    REWARD_WEIGHTS = [1 / 100, 1 / 100, 1 / 100, 1 / 100, 1 / 10, 1 / 10]
    SUCCESS_GOAL_REWARD = 0.15

    DEFAULT_CONFIG = {"centering_position": [0.5, 0.5]}

    OBSERVATION_FEATURES = ['x', 'y', 'vx', 'vy', 'cos_h', 'sin_h']
    OBSERVATION_VEHICLES = 1
    NORMALIZE_OBS = False

    def __init__(self):
        super(ParkingEnv, self).__init__()
        self.config = self.DEFAULT_CONFIG.copy()
        obs = self.reset()
        self.observation_space = spaces.Dict(
            dict(
                desired_goal=spaces.Box(-np.inf,
                                        np.inf,
                                        shape=obs["desired_goal"].shape,
                                        dtype=np.float32),
                achieved_goal=spaces.Box(-np.inf,
                                         np.inf,
                                         shape=obs["achieved_goal"].shape,
                                         dtype=np.float32),
                observation=spaces.Box(-np.inf,
                                       np.inf,
                                       shape=obs["observation"].shape,
                                       dtype=np.float32),
            ))
        self.action_space = spaces.Box(-1., 1., shape=(2, ), dtype=np.float32)
        self.REWARD_WEIGHTS = np.array(self.REWARD_WEIGHTS)
        EnvViewer.SCREEN_HEIGHT = EnvViewer.SCREEN_WIDTH // 2

    def step(self, action):
        # Forward action to the vehicle
        self.vehicle.act({
            "acceleration": action[0] * self.ACCELERATION_RANGE,
            "steering": action[1] * self.STEERING_RANGE
        })
        self._simulate()

        obs = self._observation()
        info = {
            "is_success":
            self._is_success(obs['achieved_goal'], obs['desired_goal'])
        }
        reward = self.compute_reward(obs['achieved_goal'], obs['desired_goal'],
                                     info)
        terminal = self._is_terminal()
        return obs, reward, terminal, info

    def reset(self):
        self._create_road()
        self._create_vehicles()
        return self._observation()

    def configure(self, config):
        self.config.update(config)

    def _create_road(self, spots=15):
        """
            Create a road composed of straight adjacent lanes.
        """
        net = RoadNetwork()
        width = 4.0
        lt = (LineType.CONTINUOUS, LineType.CONTINUOUS)
        x_offset = 0
        y_offset = 10
        length = 8
        for k in range(spots):
            x = (k - spots // 2) * (width + x_offset) - width / 2
            net.add_lane(
                "a", "b",
                StraightLane([x, y_offset], [x, y_offset + length],
                             width=width,
                             line_types=lt))
            net.add_lane(
                "b", "c",
                StraightLane([x, -y_offset], [x, -y_offset - length],
                             width=width,
                             line_types=lt))

        self.road = Road(network=net, np_random=self.np_random)

    def _create_vehicles(self):
        """
            Create some new random vehicles of a given type, and add them on the road.
        """
        self.vehicle = Vehicle(self.road, [0, 0],
                               2 * np.pi * self.np_random.rand(), 0)
        self.road.vehicles.append(self.vehicle)

        lane = self.np_random.choice(self.road.network.lanes_list())
        self.goal = Obstacle(self.road,
                             lane.position(lane.length / 2, 0),
                             heading=lane.heading)
        self.goal.COLLISIONS_ENABLED = False
        self.road.vehicles.insert(0, self.goal)

    def _observation(self):
        obs = np.ravel(
            pandas.DataFrame.from_records([self.vehicle.to_dict()
                                           ])[self.OBSERVATION_FEATURES])
        goal = np.ravel(
            pandas.DataFrame.from_records([self.goal.to_dict()
                                           ])[self.OBSERVATION_FEATURES])
        obs = {
            "observation": obs / self.OBS_SCALE,
            "achieved_goal": obs / self.OBS_SCALE,
            "desired_goal": goal / self.OBS_SCALE
        }
        return obs

    def compute_reward(self, achieved_goal, desired_goal, info, p=0.5):
        """
            Proximity to the goal is rewarded

            We use a weighted p-norm
        :param achieved_goal: the goal that was achieved
        :param desired_goal: the goal that was desired
        :param info: any supplementary information
        :param p: the Lp^p norm used in the reward. Use p<1 to have high kurtosis for rewards in [0, 1]
        :return: the corresponding reward
        """
        return -np.power(
            np.dot(self.OBS_SCALE * np.abs(achieved_goal - desired_goal),
                   self.REWARD_WEIGHTS), p)

    def _reward(self, action):
        raise NotImplementedError

    def _is_success(self, achieved_goal, desired_goal):
        return self.compute_reward(achieved_goal, desired_goal,
                                   None) > -self.SUCCESS_GOAL_REWARD

    def _is_terminal(self):
        """
            The episode is over if the ego vehicle crashed or the goal is reached.
        """
        obs = self._observation()
        return self.vehicle.crashed  # or self._is_success(obs['achieved_goal'], obs['desired_goal'])
def test_brake():
    v = Vehicle(road=None, position=[0, 0], velocity=20, heading=0)
    for _ in range(10 * FPS):
        v.act({'acceleration': min(max(-1*v.velocity, -6), 6), 'steering': 0})
        v.step(dt=1/FPS)
    assert v.velocity == pytest.approx(0, abs=0.01)