def test_basic_instantiation(self): ''' Tests the basic instantiation of the SHIFT class ''' # Instantiatiation with float self.model = Shift(5.0) np.testing.assert_array_almost_equal(self.model.target_magnitudes, np.array([5.0])) self.assertEqual(self.model.number_magnitudes, 1) # Instantiation with a numpy array self.model = Shift(np.arange(5., 8., 0.5)) np.testing.assert_array_almost_equal(self.model.target_magnitudes, np.arange(5., 8., 0.5)) self.assertEqual(self.model.number_magnitudes, 6) # Instantiation with list self.model = Shift([5., 6., 7., 8.]) np.testing.assert_array_almost_equal(self.model.target_magnitudes, np.array([5., 6., 7., 8.])) self.assertEqual(self.model.number_magnitudes, 4) # Otherwise raise an error with self.assertRaises(ValueError) as ae: self.model = Shift(None) self.assertEqual(ae.exception.message, 'Minimum magnitudes must be float, list or array') # Check regionalisation - assuming defaults self.model = Shift(5.0) for region in self.model.regionalisation.keys(): self.assertDictEqual(BIRD_GLOBAL_PARAMETERS[region], self.model.regionalisation[region]) np.testing.assert_array_almost_equal(np.log10(self.model.base_rate), np.array([-20.74610902]))
def test_basic_instantiation(self): # Tests the basic instantiation of the SHIFT class # Instantiatiation with float self.model = Shift(5.0) np.testing.assert_array_almost_equal(self.model.target_magnitudes, np.array([5.0])) self.assertEqual(self.model.number_magnitudes, 1) # Instantiation with a numpy array self.model = Shift(np.arange(5., 8., 0.5)) np.testing.assert_array_almost_equal(self.model.target_magnitudes, np.arange(5., 8., 0.5)) self.assertEqual(self.model.number_magnitudes, 6) # Instantiation with list self.model = Shift([5., 6., 7., 8.]) np.testing.assert_array_almost_equal(self.model.target_magnitudes, np.array([5., 6., 7., 8.])) self.assertEqual(self.model.number_magnitudes, 4) # Otherwise raise an error with self.assertRaises(ValueError) as ae: self.model = Shift(None) self.assertEqual(str(ae.exception), 'Minimum magnitudes must be float, list or array') # Check regionalisation - assuming defaults self.model = Shift(5.0) for region in self.model.regionalisation.keys(): self.assertDictEqual(BIRD_GLOBAL_PARAMETERS[region], self.model.regionalisation[region]) np.testing.assert_array_almost_equal(np.log10(self.model.base_rate), np.array([-20.74610902]))
def test_calculate_activity_rate(self): # Tests for the calculation of the activity rate. At this point # this is really a circular test - an independent test would be # helpful in future! parser0 = ReadStrainCsv(STRAIN_FILE) self.strain_model = parser0.read_data() self.model = Shift([5.0]) self.model.calculate_activity_rate(self.strain_model) expected_rate = np.array([[5.66232696e-14], [5.66232696e-14], [5.66232696e-14], [5.66232696e-14], [2.73091764e-12], [2.80389274e-12], [2.88207458e-12], [6.11293721e-12], [8.19834427e-12], [6.55082175e-12], [7.90822653e-11], [7.85391610e-11], [8.12633607e-11], [7.66785657e-11], [4.07359524e-11], [2.16914046e-10], [4.74341943e-10], [1.99907599e-10], [3.55861556e-11], [1.69536101e-10], [1.69884622e-10], [1.70233341e-10], [5.06642764e-10]]) np.testing.assert_array_almost_equal( np.log10(expected_rate), np.log10(self.model.strain.seismicity_rate))
def test_continuum_seismicity(self): # Tests the function hmtk.strain.shift.Shift.continuum_seismicity - # the python implementation of the Subroutine Continuum Seismicity # from the Fortran 90 code GSRM.f90 self.strain_model = GeodeticStrain() # Define a simple strain model test_data = { 'longitude': np.zeros(3, dtype=float), 'latitude': np.zeros(3, dtype=float), 'exx': np.array([1E-9, 1E-8, 1E-7]), 'eyy': np.array([5E-10, 5E-9, 5E-8]), 'exy': np.array([2E-9, 2E-8, 2E-7]) } self.strain_model.get_secondary_strain_data(test_data) self.model = Shift([5.66, 6.66]) threshold_moment = moment_function(np.array([5.66, 6.66])) expected_rate = np.array([[-14.43624419, -22.48168502], [-13.43624419, -21.48168502], [-12.43624419, -20.48168502]]) np.testing.assert_array_almost_equal( expected_rate, np.log10( self.model.continuum_seismicity( threshold_moment, self.strain_model.data['e1h'], self.strain_model.data['e2h'], self.strain_model.data['err'], BIRD_GLOBAL_PARAMETERS['OSRnor'])))
def test_continuum_seismicity(self): ''' Tests the function hmtk.strain.shift.Shift.continuum_seismicity - the python implementation of the Subroutine Continuum Seismicity from the Fortran 90 code GSRM.f90 ''' self.strain_model = GeodeticStrain() # Define a simple strain model test_data = {'longitude': np.zeros(3, dtype=float), 'latitude': np.zeros(3, dtype=float), 'exx': np.array([1E-9, 1E-8, 1E-7]), 'eyy': np.array([5E-10, 5E-9, 5E-8]), 'exy': np.array([2E-9, 2E-8, 2E-7])} self.strain_model.get_secondary_strain_data(test_data) self.model = Shift([5.66, 6.66]) threshold_moment = moment_function(np.array([5.66, 6.66])) expected_rate = np.array([[-14.43624419, -22.48168502], [-13.43624419, -21.48168502], [-12.43624419, -20.48168502]]) np.testing.assert_array_almost_equal( expected_rate, np.log10(self.model.continuum_seismicity( threshold_moment, self.strain_model.data['e1h'], self.strain_model.data['e2h'], self.strain_model.data['err'], BIRD_GLOBAL_PARAMETERS['OSRnor'])))
def test_reclassify_with_bird_data(self): ''' Tests the re-classification from the Kreemer classification (C, O, S, R and IPL) to the Bird & Liu (2007) classification: Region Type Kreemer Code Bird Code Intraplate IPL IPL Subduction S SUB Oceanic O OCB Continental Transform C CTF Continental Convergent C CCB Continental Rift C CRB Rigde (e1h & e2h > 0.) R OSRnor (Normal spreading) Ridge (e1h == 0.) R OSRnor Ridge ((e1h * e2h < 0) and (e1h + e2h >= 0) R OSRnor/OTFmed Ridge ((e1h * e2h < 0) and (e1h + e2h < 0) R OCB/OTFmed Ridge (any other) R OCB ''' self.model = Shift(5.0) self.strain_model.data = { # IPL SUB OCB CCB CRB CTF CTF OSRn OSRn OSR1 OSR2 OCB 'err': np.array( [0., 0., 0., 1.0, -1.0, 0.1, -0.1, 0.0, 0.0, 0.0, 0.0, 0.0]), 'e1h': np.array( [0., 0., 0., 0.0, -1.0, 0.0, -1.0, 1.0, 0.0, -1.0, -1.0, -1.0]), 'e2h': np.array( [0., 0., 0., 1.0, 0.0, 1.0, 0.0, 1.0, 0.0, 2.0, 0.5, -1.0]), 'region': np.array( ['IPL', 'S', 'O', 'C', 'C', 'C', 'C', 'R', 'R', 'R', 'R', 'R'], dtype='a13') } self.model.strain = self.strain_model expected_regions = [ 'IPL', 'SUB', 'OCB', 'CCB', 'CRB', 'CTF', 'CTF', 'OSRnor', 'OSRnor', 'OSR_special_1', 'OSR_special_2', 'OCB' ] # Apply Bird Classification self.model._reclassify_Bird_regions_with_data() self.assertListEqual(expected_regions, self.model.strain.data['region'].tolist())
def test_reclassify_with_bird_data(self): ''' Tests the re-classification from the Kreemer classification (C, O, S, R and IPL) to the Bird & Liu (2007) classification: Region Type Kreemer Code Bird Code Intraplate IPL IPL Subduction S SUB Oceanic O OCB Continental Transform C CTF Continental Convergent C CCB Continental Rift C CRB Rigde (e1h & e2h > 0.) R OSRnor (Normal spreading) Ridge (e1h == 0.) R OSRnor Ridge ((e1h * e2h < 0) and (e1h + e2h >= 0) R OSRnor/OTFmed Ridge ((e1h * e2h < 0) and (e1h + e2h < 0) R OCB/OTFmed Ridge (any other) R OCB ''' self.model = Shift(5.0) self.strain_model.data = { # IPL SUB OCB CCB CRB CTF CTF OSRn OSRn OSR1 OSR2 OCB 'err': np.array([0., 0., 0., 1.0, -1.0, 0.1, -0.1, 0.0, 0.0, 0.0, 0.0, 0.0]), 'e1h': np.array([0., 0., 0., 0.0, -1.0, 0.0, -1.0, 1.0, 0.0, -1.0, -1.0, -1.0]), 'e2h': np.array([0., 0., 0., 1.0, 0.0, 1.0, 0.0, 1.0, 0.0, 2.0, 0.5, -1.0]), 'region': np.array(['IPL', 'S', 'O', 'C', 'C', 'C', 'C', 'R', 'R', 'R', 'R', 'R'], dtype='a13')} self.model.strain = self.strain_model expected_regions = ['IPL', 'SUB', 'OCB', 'CCB', 'CRB', 'CTF', 'CTF', 'OSRnor', 'OSRnor', 'OSR_special_1', 'OSR_special_2', 'OCB'] # Apply Bird Classification self.model._reclassify_Bird_regions_with_data() self.assertListEqual(expected_regions, self.model.strain.data['region'].tolist())
def test_calculate_activity_rate(self): # Tests for the calculation of the activity rate. At this point # this is really a circular test - an independent test would be # helpful in future! parser0 = ReadStrainCsv(STRAIN_FILE) self.strain_model = parser0.read_data() self.model = Shift([5.0]) self.model.calculate_activity_rate(self.strain_model) expected_rate = np.array([ [5.66232696e-14], [5.66232696e-14], [5.66232696e-14], [5.66232696e-14], [2.73091764e-12], [2.80389274e-12], [2.88207458e-12], [6.11293721e-12], [8.19834427e-12], [6.55082175e-12], [7.90822653e-11], [7.85391610e-11], [8.12633607e-11], [7.66785657e-11], [4.07359524e-11], [2.16914046e-10], [4.74341943e-10], [1.99907599e-10], [3.55861556e-11], [1.69536101e-10], [1.69884622e-10], [1.70233341e-10], [5.06642764e-10]]) np.testing.assert_array_almost_equal( np.log10(expected_rate), np.log10(self.model.strain.seismicity_rate))
class TestShift(unittest.TestCase): ''' Test suite for the class hmtk.strain.shift.Shift ''' def setUp(self): ''' ''' self.model = None self.strain_model = GeodeticStrain() def test_basic_instantiation(self): ''' Tests the basic instantiation of the SHIFT class ''' # Instantiatiation with float self.model = Shift(5.0) np.testing.assert_array_almost_equal(self.model.target_magnitudes, np.array([5.0])) self.assertEqual(self.model.number_magnitudes, 1) # Instantiation with a numpy array self.model = Shift(np.arange(5., 8., 0.5)) np.testing.assert_array_almost_equal(self.model.target_magnitudes, np.arange(5., 8., 0.5)) self.assertEqual(self.model.number_magnitudes, 6) # Instantiation with list self.model = Shift([5., 6., 7., 8.]) np.testing.assert_array_almost_equal(self.model.target_magnitudes, np.array([5., 6., 7., 8.])) self.assertEqual(self.model.number_magnitudes, 4) # Otherwise raise an error with self.assertRaises(ValueError) as ae: self.model = Shift(None) self.assertEqual(ae.exception.message, 'Minimum magnitudes must be float, list or array') # Check regionalisation - assuming defaults self.model = Shift(5.0) for region in self.model.regionalisation.keys(): self.assertDictEqual(BIRD_GLOBAL_PARAMETERS[region], self.model.regionalisation[region]) np.testing.assert_array_almost_equal(np.log10(self.model.base_rate), np.array([-20.74610902])) def test_reclassify_with_bird_data(self): ''' Tests the re-classification from the Kreemer classification (C, O, S, R and IPL) to the Bird & Liu (2007) classification: Region Type Kreemer Code Bird Code Intraplate IPL IPL Subduction S SUB Oceanic O OCB Continental Transform C CTF Continental Convergent C CCB Continental Rift C CRB Rigde (e1h & e2h > 0.) R OSRnor (Normal spreading) Ridge (e1h == 0.) R OSRnor Ridge ((e1h * e2h < 0) and (e1h + e2h >= 0) R OSRnor/OTFmed Ridge ((e1h * e2h < 0) and (e1h + e2h < 0) R OCB/OTFmed Ridge (any other) R OCB ''' self.model = Shift(5.0) self.strain_model.data = { # IPL SUB OCB CCB CRB CTF CTF OSRn OSRn OSR1 OSR2 OCB 'err': np.array([0., 0., 0., 1.0, -1.0, 0.1, -0.1, 0.0, 0.0, 0.0, 0.0, 0.0]), 'e1h': np.array([0., 0., 0., 0.0, -1.0, 0.0, -1.0, 1.0, 0.0, -1.0, -1.0, -1.0]), 'e2h': np.array([0., 0., 0., 1.0, 0.0, 1.0, 0.0, 1.0, 0.0, 2.0, 0.5, -1.0]), 'region': np.array(['IPL', 'S', 'O', 'C', 'C', 'C', 'C', 'R', 'R', 'R', 'R', 'R'], dtype='a13')} self.model.strain = self.strain_model expected_regions = ['IPL', 'SUB', 'OCB', 'CCB', 'CRB', 'CTF', 'CTF', 'OSRnor', 'OSRnor', 'OSR_special_1', 'OSR_special_2', 'OCB'] # Apply Bird Classification self.model._reclassify_Bird_regions_with_data() self.assertListEqual(expected_regions, self.model.strain.data['region'].tolist()) def test_continuum_seismicity(self): ''' Tests the function hmtk.strain.shift.Shift.continuum_seismicity - the python implementation of the Subroutine Continuum Seismicity from the Fortran 90 code GSRM.f90 ''' self.strain_model = GeodeticStrain() # Define a simple strain model test_data = {'longitude': np.zeros(3, dtype=float), 'latitude': np.zeros(3, dtype=float), 'exx': np.array([1E-9, 1E-8, 1E-7]), 'eyy': np.array([5E-10, 5E-9, 5E-8]), 'exy': np.array([2E-9, 2E-8, 2E-7])} self.strain_model.get_secondary_strain_data(test_data) self.model = Shift([5.66, 6.66]) threshold_moment = moment_function(np.array([5.66, 6.66])) expected_rate = np.array([[-14.43624419, -22.48168502], [-13.43624419, -21.48168502], [-12.43624419, -20.48168502]]) np.testing.assert_array_almost_equal( expected_rate, np.log10(self.model.continuum_seismicity( threshold_moment, self.strain_model.data['e1h'], self.strain_model.data['e2h'], self.strain_model.data['err'], BIRD_GLOBAL_PARAMETERS['OSRnor']))) def test_calculate_activity_rate(self): ''' Tests for the calculation of the activity rate. At this point this is really a circular test - an independent test would be helpful in future! ''' parser0 = ReadStrainCsv(STRAIN_FILE) self.strain_model = parser0.read_data() self.model = Shift([5.0]) self.model.calculate_activity_rate(self.strain_model) expected_rate = np.array([[5.66232696e-14], [5.66232696e-14], [5.66232696e-14], [5.66232696e-14], [2.73091764e-12], [2.80389274e-12], [2.88207458e-12], [6.11293721e-12], [8.19834427e-12], [6.55082175e-12], [7.90822653e-11], [7.85391610e-11], [8.12633607e-11], [7.66785657e-11], [4.07359524e-11], [2.16914046e-10], [4.74341943e-10], [1.99907599e-10], [3.55861556e-11], [1.69536101e-10], [1.69884622e-10], [1.70233341e-10], [5.06642764e-10]]) np.testing.assert_array_almost_equal( np.log10(expected_rate), np.log10(self.model.strain.seismicity_rate))
class TestShift(unittest.TestCase): ''' Test suite for the class hmtk.strain.shift.Shift ''' def setUp(self): self.model = None self.strain_model = GeodeticStrain() def test_basic_instantiation(self): # Tests the basic instantiation of the SHIFT class # Instantiatiation with float self.model = Shift(5.0) np.testing.assert_array_almost_equal(self.model.target_magnitudes, np.array([5.0])) self.assertEqual(self.model.number_magnitudes, 1) # Instantiation with a numpy array self.model = Shift(np.arange(5., 8., 0.5)) np.testing.assert_array_almost_equal(self.model.target_magnitudes, np.arange(5., 8., 0.5)) self.assertEqual(self.model.number_magnitudes, 6) # Instantiation with list self.model = Shift([5., 6., 7., 8.]) np.testing.assert_array_almost_equal(self.model.target_magnitudes, np.array([5., 6., 7., 8.])) self.assertEqual(self.model.number_magnitudes, 4) # Otherwise raise an error with self.assertRaises(ValueError) as ae: self.model = Shift(None) self.assertEqual(str(ae.exception), 'Minimum magnitudes must be float, list or array') # Check regionalisation - assuming defaults self.model = Shift(5.0) for region in self.model.regionalisation.keys(): self.assertDictEqual(BIRD_GLOBAL_PARAMETERS[region], self.model.regionalisation[region]) np.testing.assert_array_almost_equal(np.log10(self.model.base_rate), np.array([-20.74610902])) def test_reclassify_with_bird_data(self): # Tests the re-classification from the Kreemer classification (C, O, S, # R and IPL) to the Bird & Liu (2007) classification: # Region Type Kreemer Code Bird Code # Intraplate IPL IPL # Subduction S SUB # Oceanic O OCB # Continental Transform C CTF # Continental Convergent C CCB # Continental Rift C CRB # Rigde (e1h & e2h > 0.) R OSRnor (Normal spreading) # Ridge (e1h == 0.) R OSRnor # Ridge ((e1h * e2h < 0) and # (e1h + e2h >= 0) R OSRnor/OTFmed # Ridge ((e1h * e2h < 0) and # (e1h + e2h < 0) R OCB/OTFmed # Ridge (any other) R OCB self.model = Shift(5.0) self.strain_model.data = { # IPL SUB OCB CCB CRB CTF CTF OSRn OSRn OSR1 OSR2 OCB 'err': np.array( [0., 0., 0., 1.0, -1.0, 0.1, -0.1, 0.0, 0.0, 0.0, 0.0, 0.0]), 'e1h': np.array( [0., 0., 0., 0.0, -1.0, 0.0, -1.0, 1.0, 0.0, -1.0, -1.0, -1.0]), 'e2h': np.array( [0., 0., 0., 1.0, 0.0, 1.0, 0.0, 1.0, 0.0, 2.0, 0.5, -1.0]), 'region': np.array( ['IPL', 'S', 'O', 'C', 'C', 'C', 'C', 'R', 'R', 'R', 'R', 'R'], dtype='a13') } self.model.strain = self.strain_model expected_regions = [ b'IPL', b'SUB', b'OCB', b'CCB', b'CRB', b'CTF', b'CTF', b'OSRnor', b'OSRnor', b'OSR_special_1', b'OSR_special_2', b'OCB' ] # Apply Bird Classification self.model._reclassify_Bird_regions_with_data() self.assertListEqual(expected_regions, self.model.strain.data['region'].tolist()) def test_continuum_seismicity(self): # Tests the function hmtk.strain.shift.Shift.continuum_seismicity - # the python implementation of the Subroutine Continuum Seismicity # from the Fortran 90 code GSRM.f90 self.strain_model = GeodeticStrain() # Define a simple strain model test_data = { 'longitude': np.zeros(3, dtype=float), 'latitude': np.zeros(3, dtype=float), 'exx': np.array([1E-9, 1E-8, 1E-7]), 'eyy': np.array([5E-10, 5E-9, 5E-8]), 'exy': np.array([2E-9, 2E-8, 2E-7]) } self.strain_model.get_secondary_strain_data(test_data) self.model = Shift([5.66, 6.66]) threshold_moment = moment_function(np.array([5.66, 6.66])) expected_rate = np.array([[-14.43624419, -22.48168502], [-13.43624419, -21.48168502], [-12.43624419, -20.48168502]]) np.testing.assert_array_almost_equal( expected_rate, np.log10( self.model.continuum_seismicity( threshold_moment, self.strain_model.data['e1h'], self.strain_model.data['e2h'], self.strain_model.data['err'], BIRD_GLOBAL_PARAMETERS['OSRnor']))) def test_calculate_activity_rate(self): # Tests for the calculation of the activity rate. At this point # this is really a circular test - an independent test would be # helpful in future! parser0 = ReadStrainCsv(STRAIN_FILE) self.strain_model = parser0.read_data() self.model = Shift([5.0]) self.model.calculate_activity_rate(self.strain_model) expected_rate = np.array([[5.66232696e-14], [5.66232696e-14], [5.66232696e-14], [5.66232696e-14], [2.73091764e-12], [2.80389274e-12], [2.88207458e-12], [6.11293721e-12], [8.19834427e-12], [6.55082175e-12], [7.90822653e-11], [7.85391610e-11], [8.12633607e-11], [7.66785657e-11], [4.07359524e-11], [2.16914046e-10], [4.74341943e-10], [1.99907599e-10], [3.55861556e-11], [1.69536101e-10], [1.69884622e-10], [1.70233341e-10], [5.06642764e-10]]) np.testing.assert_array_almost_equal( np.log10(expected_rate), np.log10(self.model.strain.seismicity_rate))