Beispiel #1
0
def test_prep_schema():
    sch_f = detector_grid(shape=5, spacing=1)
    sch_x = detector_grid(
        shape=5,
        spacing=1,
        extra_dims={'illumination': ['red', 'green', 'blue']})

    wl_f = 0.5
    wl_l = [0.5, 0.6, 0.7]
    wl_d = OrderedDict([('red', 0.5), ('green', 0.6), ('blue', 0.7)])
    wl_x = xr.DataArray([0.5, 0.6, 0.7],
                        dims='illumination',
                        coords={'illumination': ['red', 'green', 'blue']})

    pol_f = (0, 1)
    pol_d = OrderedDict([('red', (0, 1)), ('green', (1, 0)),
                         ('blue', (0.5, 0.5))])

    pol_x = xr.concat(
        [to_vector((0, 1)),
         to_vector((1, 0)),
         to_vector((0.5, 0.5))], wl_x.illumination)

    all_in = prep_schema(sch_x, 1, wl_x, pol_x)

    assert_obj_close(prep_schema(sch_x, 1, wl_d, pol_d), all_in)
    assert_obj_close(prep_schema(sch_x, 1, wl_l, pol_d), all_in)
    assert_obj_close(prep_schema(sch_f, 1, wl_x, pol_x), all_in)
Beispiel #2
0
def calc_cross_sections(scatterer, medium_index=None, illum_wavelen=None,
                        illum_polarization=None, theory='auto'):
    """
    Calculate scattering, absorption, and extinction
    cross sections, and asymmetry parameter <cos \theta>.

    Parameters
    ----------
    scatterer : :class:`.scatterer` object
        (possibly composite) scatterer for which to compute scattering
    medium_index : float or complex
        Refractive index of the medium in which the scatter is imbedded
    illum_wavelen : float or ndarray(float)
        Wavelength of illumination light. If illum_wavelen is an array result
        will add a dimension and have all wavelengths
    theory : :class:`.theory` object (optional)
        Scattering theory object to use for the calculation. This is
        optional if there is a clear choice of theory for your scatterer.
        If there is not a clear choice, `calc_cross_sections` will error
        out and ask you to specify a theory

    Returns
    -------
    cross_sections : array (4)
        Dimensional scattering, absorption, and extinction
        cross sections, and <cos theta>
    """
    theory = interpret_theory(scatterer, theory)
    cross_section = theory.calculate_cross_sections(
        scatterer=scatterer.guess,
        medium_wavevec=2*np.pi/(illum_wavelen/medium_index),
        medium_index=medium_index,
        illum_polarization=to_vector(illum_polarization))
    return cross_section
Beispiel #3
0
def test_raw_fields():
    sp = Sphere(r=.5, n=1.6, center=(10, 10, 5))
    wavelen = .66
    index = 1.33
    pol = to_vector((0, 1))
    sch = detector_grid(3, .1)
    wavevec=2*np.pi/(wavelen/index)
    pos = Mie._transform_to_desired_coordinates(
        sch, (10, 10, 5), wavevec=wavevec)
    rf = Mie()._raw_fields(
        pos, sp, medium_wavevec=wavevec, medium_index=index,
        illum_polarization=pol)
    assert_allclose(rf, [[(0.0015606995428858754-0.0019143174710834162j),
  (-0.0003949071974815011-0.0024154494284017187j),
  (-0.002044525390662322-0.001302770747742109j),
  (-0.0003949071974815009-0.002415449428401719j),
  (-0.002055824337886397-0.0012853546864338861j),
  (-0.00230285180386436+0.000678693819245102j),
  (-0.0020445253906623225-0.0013027707477421095j),
  (-0.0023028518038643603+0.0006786938192451026j),
  (-0.0010011090105680883+0.0021552249454706712j)],
 [(-0.0010507058414478587+0.0036584360153097306j),
  (0.0020621595919700776+0.003210547679920805j),
  (0.0037794246074692407+0.000585690417403587j),
  (0.0020542215584045407+0.0031619947065620246j),
  (0.0037426710578253295+0.000527040269055415j),
  (0.002871631795307833-0.002470099566862354j),
  (0.0036968090916832948+0.0005330478443315597j),
  (0.002824872178181336-0.0024563186266035124j),
  (2.261564613123139e-06-0.003751168280253104j)],
 [(0.0010724312167657794+0.0039152445632936j),
  (0.003651474601303447+0.0017688083711547462j),
  (0.003740131549224567-0.001566271371618957j),
  (0.0036883581831347947+0.0017866751223785315j),
  (0.0037648739662344477-0.001614943488355339j),
  (0.0012643679510138835-0.003894481935619062j),
  (0.003816460764514863-0.0015982360934887314j),
  (0.0012772696647997395-0.0039342215472070105j),
  (-0.0021320123934202356-0.0035427449839031066j)]])
Beispiel #4
0
def load_image(inf,
               spacing=None,
               medium_index=None,
               illum_wavelen=None,
               illum_polarization=None,
               normals=None,
               noise_sd=None,
               channel=None,
               name=None):
    """
    Load data or results

    Parameters
    ----------
    inf : string
        File to load.
    spacing : float or (float, float) (optional)
        pixel size of images in each dimension - assumes square pixels if single value.
        set equal to 1 if not passed in and issues warning.
    medium_index : float (optional)
        refractive index of the medium
    illum_wavelen : float (optional)
        wavelength (in vacuum) of illuminating light
    illum_polarization : (float, float) (optional)
        (x, y) polarization vector of the illuminating light
    noise_sd : float (optional)
        noise level in the image, normalized to image intensity
    channel : int or tuple of ints (optional)
        number(s) of channel to load for a color image (in general 0=red,
        1=green, 2=blue)
	name : str (optional)
        name to assign the xr.DataArray object resulting from load_image

    Returns
    -------
    obj : xarray.DataArray representation of the image with associated metadata

    """
    if normals is not None:
        raise ValueError(NORMALS_DEPRECATION_MESSAGE)
    if name is None:
        name = os.path.splitext(os.path.split(inf)[-1])[0]

    with open(inf, 'rb') as pi_raw:
        pi = pilimage.open(pi_raw)
        arr = np.asarray(pi).astype('d')
        try:
            if isinstance(yaml.safe_load(pi.tag[270][0]), dict):
                warnings.warn(
                    "Metadata detected but ignored. Use hp.load to read it.")
        except (AttributeError, KeyError):
            pass

    extra_dims = None
    if channel is None:
        if arr.ndim > 2:
            raise BadImage(
                'Not a greyscale image. You must specify which channel(s) to use'
            )
    elif arr.ndim == 2:
        if not channel == 'all':
            warnings.warn("Not a color image (channel number ignored)")
        pass
    else:
        # color image with specified channel(s)
        if channel == 'all':
            channel = range(arr.shape[2])
        channel = ensure_array(channel)
        if channel.max() >= arr.shape[2]:
            raise LoadError(
                filename, "The image doesn't have a channel number {0}".format(
                    channel.max()))
        else:
            arr = arr[:, :, channel].squeeze()

            if len(channel) > 1:
                # multiple channels. increase output dimensionality
                if channel.max() <= 2:
                    channel = [['red', 'green', 'blue'][c] for c in channel]
                extra_dims = {illumination: channel}
                if illum_wavelen is not None and not isinstance(
                        illum_wavelen, dict) and len(
                            ensure_array(illum_wavelen)) == len(channel):
                    illum_wavelen = xr.DataArray(ensure_array(illum_wavelen),
                                                 dims=illumination,
                                                 coords=extra_dims)
                if not isinstance(illum_polarization, dict) and np.array(
                        illum_polarization).ndim == 2:
                    pol_index = xr.DataArray(channel,
                                             dims=illumination,
                                             name=illumination)
                    illum_polarization = xr.concat(
                        [to_vector(pol) for pol in illum_polarization],
                        pol_index)

    image = data_grid(arr,
                      spacing=spacing,
                      medium_index=medium_index,
                      illum_wavelen=illum_wavelen,
                      illum_polarization=illum_polarization,
                      noise_sd=noise_sd,
                      name=name,
                      extra_dims=extra_dims)
    return image