Beispiel #1
0
 def test_gauss_seidel_step(self):
     # the test written below tests if Gauss-seidel step produces the
     # correct output for a sompletridiagonal SDD matrix A
     A = array([
         [11.07336608, -0.85580894, 0., 0., 0., 0., 0., 0., 0., 0.],
         [0.34408418, -11.5525474, 1.32434231, 0., 0., 0., 0., 0., 0., 0.],
         [0., -1.25446038, 11.39901, 0.47072897, 0., 0., 0., 0., 0., 0.],
         [0., 0., 1.23226501, -10.25414388, -0.3773415, 0., 0., 0., 0., 0.],
         [0., 0., 0., 1.22311693, 10.2952351, 0.78994453, 0., 0., 0., 0.],
         [
             0., 0., 0., 0., -0.42566436, -10.52022012, -1.58403561, 0., 0.,
             0.
         ],
         [
             0., 0., 0., 0., 0., 0.65026657, -10.45407605, -1.44470734, 0.,
             0.
         ],
         [0., 0., 0., 0., 0., 0., 0.90469079, 10.33843249, -0.49375486, 0.],
         [
             0., 0., 0., 0., 0., 0., 0., -0.76157863, -10.82581569,
             -0.97784685
         ], [0., 0., 0., 0., 0., 0., 0., 0., 0.80920961, 11.84434943]
     ])
     b = array([
         -0.82211229, -1.40264905, -0.10539367, 0.22763046, 0.15404998,
         1.13328694, -2.68971004, 0.18112895, -0.56502348, -0.6756333
     ])
     x0 = ones(len(b))
     D, L, U = decompose(A)
     x1 = gauss_seidel_step(D, L, U, b, x0)
     x1_actual = array([
         -0.06170079, 0.16227553, 0.09662346, 0.10123638, -0.08866736,
         -0.19775514, 0.32920744, -0.0703139, -0.00683268, -0.12536298
     ])
     self.assertAlmostEqual(norm(x1 - x1_actual), 0)
 def test_jacobi_step(self):
     # the test written below tests if jacobi step produces the
     # correct output for a sompletridiagonal SDD matrix A
     A = array([
         [11.07336608, -0.85580894, 0., 0., 0., 0., 0., 0., 0., 0.],
         [0.34408418, -11.5525474, 1.32434231, 0., 0., 0., 0., 0., 0., 0.],
         [0., -1.25446038, 11.39901, 0.47072897, 0., 0., 0., 0., 0., 0.],
         [0., 0., 1.23226501, -10.25414388, -0.3773415, 0., 0., 0., 0., 0.],
         [0., 0., 0., 1.22311693, 10.2952351, 0.78994453, 0., 0., 0., 0.],
         [
             0., 0., 0., 0., -0.42566436, -10.52022012, -1.58403561, 0., 0.,
             0.
         ],
         [
             0., 0., 0., 0., 0., 0.65026657, -10.45407605, -1.44470734, 0.,
             0.
         ],
         [0., 0., 0., 0., 0., 0., 0.90469079, 10.33843249, -0.49375486, 0.],
         [
             0., 0., 0., 0., 0., 0., 0., -0.76157863, -10.82581569,
             -0.97784685
         ], [0., 0., 0., 0., 0., 0., 0., 0., 0.80920961, 11.84434943]
     ])
     b = array([
         -0.82211229, -1.40264905, -0.10539367, 0.22763046, 0.15404998,
         1.13328694, -2.68971004, 0.18112895, -0.56502348, -0.6756333
     ])
     x0 = ones(len(b))
     D, L, U = decompose(A)
     x1 = jacobi_step(D, L, U, b, x0)
     x1_actual = array([
         0.00304304, 0.26583536, 0.05950848, 0.06117459, -0.18057009,
         -0.29875676, 0.18129477, -0.02222842, -0.10848162, -0.12536298
     ])
     self.assertAlmostEqual(norm(x1 - x1_actual), 0)
Beispiel #3
0
    def test_decompose(self):
        # the test written below only tests if the identity matrix is properly
        # decomposed. this is not sufficient for testing if decompose() works
        # properly but is a good start.
        A = eye(3)
        D, L, U = decompose(A)
        D_actual = eye(3)
        L_actual = zeros((3,3))
        U_actual = zeros((3,3))
        self.assertAlmostEqual(norm(D_actual - D), 0)
        self.assertAlmostEqual(norm(L_actual - L), 0)
        self.assertAlmostEqual(norm(U_actual - U), 0)

        #test a 3 x 3 matrix
        A = array([[1,2,3], [4,5,6], [7,8,9]])
        D, L, U = decompose(A)
        D2 = numpy.diag([1,5,9])
        L2 = array([[0,0,0], [4,0,0], [7,8,0]]) 
        U2 = array([[0,2,3], [0,0,6], [0,0,0]])
        self.assertAlmostEqual(norm(D2 - D), 0)
        self.assertAlmostEqual(norm(L2 - L), 0)
        self.assertAlmostEqual(norm(U2 - U), 0) 

        #test a 4 x 4 matrix and type float
        A = array([[1,2.0,3,4],  [5,6,7.0,8], [9,10,11,12], [13,14,15,16]])
        D, L, U = decompose(A)
        D4 = numpy.diag([1,6,11,16])
        L4 = array([[0,0,0,0], [5,0,0,0], [9,10,0,0], [13,14,15,0]])
        U4 = array([[0,2.0,3,4], [0,0,7.0,8], [0,0,0,12], [0,0,0,0]])
        self.assertAlmostEqual(norm(D4 - D), 0)
        self.assertAlmostEqual(norm(L4 - L), 0)
        self.assertAlmostEqual(norm(U4 - U), 0)

	#test a 1 x 1 matrix
        A = array([[10]])
        D, L, U = decompose(A)
        D5 = numpy.diag([10])
        L5 = None 
        U5 = None
        self.assertAlmostEquals(norm(D5 - D), 0)
        self.assertEquals(L5, None)
        self.assertEquals(U5, None)
Beispiel #4
0
    def test_decompose(self):
        # the test written below only tests if the identity matrix is properly
        # decomposed. this is not sufficient for testing if decompose() works
        # properly but is a good start.
        A = eye(3)
        D, L, U = decompose(A)
        D_actual = eye(3)
        L_actual = zeros((3,3))
        U_actual = zeros((3,3))

        self.assertAlmostEqual(norm(D_actual - D), 0)
        self.assertAlmostEqual(norm(L_actual - L), 0)
        self.assertAlmostEqual(norm(U_actual - U), 0)
    def test_decompose(self):
        # the test written below only tests if the identity matrix is properly
        # decomposed. this is not sufficient for testing if decompose() works
        # properly but is a good start.
        A = eye(3)
        D, L, U = decompose(A)
        D_actual = eye(3)
        L_actual = zeros((3,3))
        U_actual = zeros((3,3))

        self.assertAlmostEqual(norm(D_actual - D), 0)
        self.assertAlmostEqual(norm(L_actual - L), 0)
        self.assertAlmostEqual(norm(U_actual - U), 0)
 def test_gauss_seidel_step(self):
     # the test written below tests if Gauss-seidel step produces the
     # correct output for a sompletridiagonal SDD matrix A
     A = array([[ 11.07336608,  -0.85580894,   0.        ,   0.        ,
                   0.        ,   0.        ,   0.        ,   0.        ,
                   0.        ,   0.        ],
                [  0.34408418, -11.5525474 ,   1.32434231,   0.        ,
                   0.        ,   0.        ,   0.        ,   0.        ,
                   0.        ,   0.        ],
                [  0.        ,  -1.25446038,  11.39901   ,   0.47072897,
                   0.        ,   0.        ,   0.        ,   0.        ,
                   0.        ,   0.        ],
                [  0.        ,   0.        ,   1.23226501, -10.25414388,
                  -0.3773415 ,   0.        ,   0.        ,   0.        ,
                   0.        ,   0.        ],
                [  0.        ,   0.        ,   0.        ,   1.22311693,
                  10.2952351 ,   0.78994453,   0.        ,   0.        ,
                   0.        ,   0.        ],
                [  0.        ,   0.        ,   0.        ,   0.        ,
                  -0.42566436, -10.52022012,  -1.58403561,   0.        ,
                   0.        ,   0.        ],
                [  0.        ,   0.        ,   0.        ,   0.        ,
                   0.        ,   0.65026657, -10.45407605,  -1.44470734,
                   0.        ,   0.        ],
                [  0.        ,   0.        ,   0.        ,   0.        ,
                   0.        ,   0.        ,   0.90469079,  10.33843249,
                  -0.49375486,   0.        ],
                [  0.        ,   0.        ,   0.        ,   0.        ,
                   0.        ,   0.        ,   0.        ,  -0.76157863,
                 -10.82581569,  -0.97784685],
                [  0.        ,   0.        ,   0.        ,   0.        ,
                   0.        ,   0.        ,   0.        ,   0.        ,
                   0.80920961,  11.84434943]])
     b = array([-0.82211229, -1.40264905, -0.10539367,  0.22763046,  0.15404998,
                 1.13328694, -2.68971004,  0.18112895, -0.56502348, -0.6756333 ])
     x0 = ones(len(b))
     D, L, U = decompose(A)
     x1 = gauss_seidel_step(D, L, U, b, x0)
     x1_actual = array([-0.06170079,  0.16227553,  0.09662346,  0.10123638, -0.08866736,
                        -0.19775514,  0.32920744, -0.0703139 , -0.00683268, -0.12536298])
     x1_actual_correct = array([0.00304304, 0.23614172, -0.02455408, -0.06194853, -0.05440617,
                                -0.25609386, 0.10316296,  0.05625159, -0.04209044, -0.05416704])
     self.assertAlmostEqual(min(norm(x1-x1_actual), norm(x1-x1_actual_correct)), 0)
 def test_jacobi_step(self):
     # the test written below tests if jacobi step produces the
     # correct output for a sompletridiagonal SDD matrix A
     A = array([[ 11.07336608,  -0.85580894,   0.        ,   0.        ,
                   0.        ,   0.        ,   0.        ,   0.        ,
                   0.        ,   0.        ],
                [  0.34408418, -11.5525474 ,   1.32434231,   0.        ,
                   0.        ,   0.        ,   0.        ,   0.        ,
                   0.        ,   0.        ],
                [  0.        ,  -1.25446038,  11.39901   ,   0.47072897,
                   0.        ,   0.        ,   0.        ,   0.        ,
                   0.        ,   0.        ],
                [  0.        ,   0.        ,   1.23226501, -10.25414388,
                  -0.3773415 ,   0.        ,   0.        ,   0.        ,
                   0.        ,   0.        ],
                [  0.        ,   0.        ,   0.        ,   1.22311693,
                  10.2952351 ,   0.78994453,   0.        ,   0.        ,
                   0.        ,   0.        ],
                [  0.        ,   0.        ,   0.        ,   0.        ,
                  -0.42566436, -10.52022012,  -1.58403561,   0.        ,
                   0.        ,   0.        ],
                [  0.        ,   0.        ,   0.        ,   0.        ,
                   0.        ,   0.65026657, -10.45407605,  -1.44470734,
                   0.        ,   0.        ],
                [  0.        ,   0.        ,   0.        ,   0.        ,
                   0.        ,   0.        ,   0.90469079,  10.33843249,
                  -0.49375486,   0.        ],
                [  0.        ,   0.        ,   0.        ,   0.        ,
                   0.        ,   0.        ,   0.        ,  -0.76157863,
                 -10.82581569,  -0.97784685],
                [  0.        ,   0.        ,   0.        ,   0.        ,
                   0.        ,   0.        ,   0.        ,   0.        ,
                   0.80920961,  11.84434943]])
     b = array([-0.82211229, -1.40264905, -0.10539367,  0.22763046,  0.15404998,
                 1.13328694, -2.68971004,  0.18112895, -0.56502348, -0.6756333 ])
     x0 = ones(len(b))
     D, L, U = decompose(A)
     x1 = jacobi_step(D, L, U, b, x0)
     x1_actual = array([ 0.00304304,  0.26583536,  0.05950848,  0.06117459, -0.18057009,
                        -0.29875676,  0.18129477, -0.02222842, -0.10848162, -0.12536298])
     self.assertAlmostEqual(norm(x1-x1_actual), 0)
 def test_decompose(self):
     # the test written below tests if a random dense 10x10 SDD matrix A is properly
     # decomposed.
     B=array([[ 0.28384623, -0.00671327, -0.5909395 ,  0.22319892,  0.47311985,
                0.68994718,  1.68902479,  1.31311603,  1.34724346,  0.87469211],
              [ 1.4600519 ,  1.32770264, -0.07754125, -0.40217056, -0.58388847,
               -1.51263798, -0.47040971,  2.30832758,  0.92357739,  0.54564659],
              [ 0.57554678,  0.15559427,  1.90983902,  0.16232167, -0.07962706,
               -0.54497108, -1.51698454,  0.86898915,  0.96449889,  0.33047333],
              [-2.29421824, -0.12860935, -2.4615153 , -0.49196098, -0.39143065,
                0.7018368 ,  0.61227205, -0.0688328 , -0.14342273,  0.49445229],
              [ 0.20822844, -1.53027653,  1.60181548, -1.78165038, -0.5640091 ,
                1.18444976, -0.03295762,  1.53161805,  0.86493622,  1.18826723],
              [ 1.19243729,  0.97582135, -0.39137045,  2.20075989, -0.3963792 ,
               -0.70617887,  0.56454132, -0.16555516,  1.059915  , -0.56712244],
              [ 1.69045549,  0.67501015, -1.4364708 ,  0.8182705 ,  1.09775466,
               -0.61637005, -0.23972642,  0.96483237,  1.80930647, -0.31649356],
              [ 0.12250029,  0.53998451,  0.71529106, -0.55052708,  0.37901874,
               -0.45185482,  1.32690993, -0.35890031,  0.86842993, -0.96008517],
              [-0.79938861,  0.53407704,  1.14140023,  0.39350382,  0.01804328,
                0.16847941, -0.22454093,  1.13058928,  1.6950224 ,  0.59640698],
              [-0.16192425, -0.07277925, -0.03477962,  0.36739539,  0.15564998,
                1.92979674,  0.84068755, -1.41742836, -0.059325  ,  0.26732909]])
     D, L, U = decompose(B)
     D_actual = array(array([[ 0.28384623,  0.        ,  0.        ,  0.        ,  0.        ,
                               0.        ,  0.        ,  0.        ,  0.        ,  0.        ],
                             [ 0.        ,  1.32770264,  0.        ,  0.        ,  0.        ,
                               0.        ,  0.        ,  0.        ,  0.        ,  0.        ],
                             [ 0.        ,  0.        ,  1.90983902,  0.        ,  0.        ,
                               0.        ,  0.        ,  0.        ,  0.        ,  0.        ],
                             [ 0.        ,  0.        ,  0.        , -0.49196098,  0.        ,
                               0.        ,  0.        ,  0.        ,  0.        ,  0.        ],
                             [ 0.        ,  0.        ,  0.        ,  0.        , -0.5640091 ,
                               0.        ,  0.        ,  0.        ,  0.        ,  0.        ],
                             [ 0.        ,  0.        ,  0.        ,  0.        ,  0.        ,
                              -0.70617887,  0.        ,  0.        ,  0.        ,  0.        ],
                             [ 0.        ,  0.        ,  0.        ,  0.        ,  0.        ,
                               0.        , -0.23972642,  0.        ,  0.        ,  0.        ],
                             [ 0.        ,  0.        ,  0.        ,  0.        ,  0.        ,
                               0.        ,  0.        , -0.35890031,  0.        ,  0.        ],
                             [ 0.        ,  0.        ,  0.        ,  0.        ,  0.        ,
                               0.        ,  0.        ,  0.        ,  1.6950224 ,  0.        ],
                             [ 0.        ,  0.        ,  0.        ,  0.        ,  0.        ,
                               0.        ,  0.        ,  0.        ,  0.        ,  0.26732909]]))
     L_actual = array([[ 0.        ,  0.        ,  0.        ,  0.        ,  0.        ,
                         0.        ,  0.        ,  0.        ,  0.        ,  0.        ],
                       [ 1.4600519 ,  0.        ,  0.        ,  0.        ,  0.        ,
                         0.        ,  0.        ,  0.        ,  0.        ,  0.        ],
                       [ 0.57554678,  0.15559427,  0.        ,  0.        ,  0.        ,
                         0.        ,  0.        ,  0.        ,  0.        ,  0.        ],
                       [-2.29421824, -0.12860935, -2.4615153 ,  0.        ,  0.        ,
                         0.        ,  0.        ,  0.        ,  0.        ,  0.        ],
                       [ 0.20822844, -1.53027653,  1.60181548, -1.78165038,  0.        ,
                         0.        ,  0.        ,  0.        ,  0.        ,  0.        ],
                       [ 1.19243729,  0.97582135, -0.39137045,  2.20075989, -0.3963792 ,
                         0.        ,  0.        ,  0.        ,  0.        ,  0.        ],
                       [ 1.69045549,  0.67501015, -1.4364708 ,  0.8182705 ,  1.09775466,
                        -0.61637005,  0.        ,  0.        ,  0.        ,  0.        ],
                       [ 0.12250029,  0.53998451,  0.71529106, -0.55052708,  0.37901874,
                        -0.45185482,  1.32690993,  0.        ,  0.        ,  0.        ],
                       [-0.79938861,  0.53407704,  1.14140023,  0.39350382,  0.01804328,
                         0.16847941, -0.22454093,  1.13058928,  0.        ,  0.        ],
                       [-0.16192425, -0.07277925, -0.03477962,  0.36739539,  0.15564998,
                         1.92979674,  0.84068755, -1.41742836, -0.059325  ,  0.        ]])
     U_actual = array([[ 0.        , -0.00671327, -0.5909395 ,  0.22319892,  0.47311985,
                         0.68994718,  1.68902479,  1.31311603,  1.34724346,  0.87469211],
                       [ 0.        ,  0.        , -0.07754125, -0.40217056, -0.58388847,
                        -1.51263798, -0.47040971,  2.30832758,  0.92357739,  0.54564659],
                       [ 0.        ,  0.        ,  0.        ,  0.16232167, -0.07962706,
                        -0.54497108, -1.51698454,  0.86898915,  0.96449889,  0.33047333],
                       [ 0.        ,  0.        ,  0.        ,  0.        , -0.39143065,
                         0.7018368 ,  0.61227205, -0.0688328 , -0.14342273,  0.49445229],
                       [ 0.        ,  0.        ,  0.        ,  0.        ,  0.        ,
                         1.18444976, -0.03295762,  1.53161805,  0.86493622,  1.18826723],
                       [ 0.        ,  0.        ,  0.        ,  0.        ,  0.        ,
                         0.        ,  0.56454132, -0.16555516,  1.059915  , -0.56712244],
                       [ 0.        ,  0.        ,  0.        ,  0.        ,  0.        ,
                         0.        ,  0.        ,  0.96483237,  1.80930647, -0.31649356],
                       [ 0.        ,  0.        ,  0.        ,  0.        ,  0.        ,
                         0.        ,  0.        ,  0.        ,  0.86842993, -0.96008517],
                       [ 0.        ,  0.        ,  0.        ,  0.        ,  0.        ,
                         0.        ,  0.        ,  0.        ,  0.        ,  0.59640698],
                       [ 0.        ,  0.        ,  0.        ,  0.        ,  0.        ,
                         0.        ,  0.        ,  0.        ,  0.        ,  0.        ]])
     self.assertAlmostEqual(norm(D_actual - D), 0)
     self.assertAlmostEqual(norm(L_actual - L), 0)
     self.assertAlmostEqual(norm(U_actual - U), 0)
 def test_decompose(self):
     # the test written below tests if a random dense 10x10 SDD matrix A is properly
     # decomposed.
     B = array(
         [[
             0.28384623, -0.00671327, -0.5909395, 0.22319892, 0.47311985,
             0.68994718, 1.68902479, 1.31311603, 1.34724346, 0.87469211
         ],
          [
              1.4600519, 1.32770264, -0.07754125, -0.40217056, -0.58388847,
              -1.51263798, -0.47040971, 2.30832758, 0.92357739, 0.54564659
          ],
          [
              0.57554678, 0.15559427, 1.90983902, 0.16232167, -0.07962706,
              -0.54497108, -1.51698454, 0.86898915, 0.96449889, 0.33047333
          ],
          [
              -2.29421824, -0.12860935, -2.4615153, -0.49196098,
              -0.39143065, 0.7018368, 0.61227205, -0.0688328, -0.14342273,
              0.49445229
          ],
          [
              0.20822844, -1.53027653, 1.60181548, -1.78165038, -0.5640091,
              1.18444976, -0.03295762, 1.53161805, 0.86493622, 1.18826723
          ],
          [
              1.19243729, 0.97582135, -0.39137045, 2.20075989, -0.3963792,
              -0.70617887, 0.56454132, -0.16555516, 1.059915, -0.56712244
          ],
          [
              1.69045549, 0.67501015, -1.4364708, 0.8182705, 1.09775466,
              -0.61637005, -0.23972642, 0.96483237, 1.80930647, -0.31649356
          ],
          [
              0.12250029, 0.53998451, 0.71529106, -0.55052708, 0.37901874,
              -0.45185482, 1.32690993, -0.35890031, 0.86842993, -0.96008517
          ],
          [
              -0.79938861, 0.53407704, 1.14140023, 0.39350382, 0.01804328,
              0.16847941, -0.22454093, 1.13058928, 1.6950224, 0.59640698
          ],
          [
              -0.16192425, -0.07277925, -0.03477962, 0.36739539, 0.15564998,
              1.92979674, 0.84068755, -1.41742836, -0.059325, 0.26732909
          ]])
     D, L, U = decompose(B)
     D_actual = array(
         array([[0.28384623, 0., 0., 0., 0., 0., 0., 0., 0., 0.],
                [0., 1.32770264, 0., 0., 0., 0., 0., 0., 0., 0.],
                [0., 0., 1.90983902, 0., 0., 0., 0., 0., 0., 0.],
                [0., 0., 0., -0.49196098, 0., 0., 0., 0., 0., 0.],
                [0., 0., 0., 0., -0.5640091, 0., 0., 0., 0., 0.],
                [0., 0., 0., 0., 0., -0.70617887, 0., 0., 0., 0.],
                [0., 0., 0., 0., 0., 0., -0.23972642, 0., 0., 0.],
                [0., 0., 0., 0., 0., 0., 0., -0.35890031, 0., 0.],
                [0., 0., 0., 0., 0., 0., 0., 0., 1.6950224, 0.],
                [0., 0., 0., 0., 0., 0., 0., 0., 0., 0.26732909]]))
     L_actual = array([
         [0., 0., 0., 0., 0., 0., 0., 0., 0., 0.],
         [1.4600519, 0., 0., 0., 0., 0., 0., 0., 0., 0.],
         [0.57554678, 0.15559427, 0., 0., 0., 0., 0., 0., 0., 0.],
         [-2.29421824, -0.12860935, -2.4615153, 0., 0., 0., 0., 0., 0., 0.],
         [
             0.20822844, -1.53027653, 1.60181548, -1.78165038, 0., 0., 0.,
             0., 0., 0.
         ],
         [
             1.19243729, 0.97582135, -0.39137045, 2.20075989, -0.3963792,
             0., 0., 0., 0., 0.
         ],
         [
             1.69045549, 0.67501015, -1.4364708, 0.8182705, 1.09775466,
             -0.61637005, 0., 0., 0., 0.
         ],
         [
             0.12250029, 0.53998451, 0.71529106, -0.55052708, 0.37901874,
             -0.45185482, 1.32690993, 0., 0., 0.
         ],
         [
             -0.79938861, 0.53407704, 1.14140023, 0.39350382, 0.01804328,
             0.16847941, -0.22454093, 1.13058928, 0., 0.
         ],
         [
             -0.16192425, -0.07277925, -0.03477962, 0.36739539, 0.15564998,
             1.92979674, 0.84068755, -1.41742836, -0.059325, 0.
         ]
     ])
     U_actual = array(
         [[
             0., -0.00671327, -0.5909395, 0.22319892, 0.47311985,
             0.68994718, 1.68902479, 1.31311603, 1.34724346, 0.87469211
         ],
          [
              0., 0., -0.07754125, -0.40217056, -0.58388847, -1.51263798,
              -0.47040971, 2.30832758, 0.92357739, 0.54564659
          ],
          [
              0., 0., 0., 0.16232167, -0.07962706, -0.54497108, -1.51698454,
              0.86898915, 0.96449889, 0.33047333
          ],
          [
              0., 0., 0., 0., -0.39143065, 0.7018368, 0.61227205,
              -0.0688328, -0.14342273, 0.49445229
          ],
          [
              0., 0., 0., 0., 0., 1.18444976, -0.03295762, 1.53161805,
              0.86493622, 1.18826723
          ],
          [
              0., 0., 0., 0., 0., 0., 0.56454132, -0.16555516, 1.059915,
              -0.56712244
          ],
          [0., 0., 0., 0., 0., 0., 0., 0.96483237, 1.80930647, -0.31649356],
          [0., 0., 0., 0., 0., 0., 0., 0., 0.86842993, -0.96008517],
          [0., 0., 0., 0., 0., 0., 0., 0., 0., 0.59640698],
          [0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]])
     self.assertAlmostEqual(norm(D_actual - D), 0)
     self.assertAlmostEqual(norm(L_actual - L), 0)
     self.assertAlmostEqual(norm(U_actual - U), 0)