def __init__(self,
                 model,
                 criterion,
                 optimizer,
                 lr_scheduler=None,
                 metrics=None,
                 test_metrics=None,
                 save_path=".",
                 name="Net"):

        self.model = model
        self.criterion = criterion
        self.optimizer = optimizer
        self.lr_scheduler = lr_scheduler
        self.metrics = metrics or {}
        self.test_metrics = test_metrics
        if test_metrics is None:
            self.test_metrics = metrics.copy()
            if 'loss' in metrics and isinstance(metrics['loss'], TrainLoss):
                self.test_metrics['loss'] = Loss(criterion=criterion)
        self.save_path = os.path.join(save_path, 'trainer')
        self.name = name

        current_time = datetime.now().strftime('%b%d_%H-%M-%S')
        log_dir = os.path.join(save_path, 'runs', self.name, current_time)
        self.writer = SummaryWriter(log_dir)

        self.metric_history = defaultdict(list)
        self.device = 'cuda' if CUDA else 'cpu'
        self._timer = Timer()
        self._epochs = 0

        self.model.to(self.device)
Beispiel #2
0
def fit_fn(ds_train, ds_val, verbose):

    net = LeNet5()
    criterion = nn.CrossEntropyLoss()
    optimizer = SGD(net.parameters(),
                    lr=0.01,
                    momentum=0.9,
                    weight_decay=1e-4,
                    nesterov=True)
    # lr_scheduler = MultiStepLR(optimizer, [10, 20], gamma=0.1)
    lr_scheduler = CosineAnnealingLR(optimizer,
                                     T_max=30,
                                     eta_min=0.001,
                                     warmup=5,
                                     warmup_eta_min=0.01)

    metrics = {
        'loss': TrainLoss(),
        'acc': Accuracy(),
    }

    test_metrics = {
        'loss': Loss(criterion),
        'acc': Accuracy(),
    }

    trainer = Trainer(net,
                      criterion,
                      optimizer,
                      lr_scheduler,
                      metrics=metrics,
                      test_metrics=test_metrics,
                      work_dir="./checkpoints/MNIST-LeNet5")
    trainer._verbose = False
    # summary(net, (1, 32, 32))

    train_loader = DataLoader(ds_train,
                              batch_size=128,
                              shuffle=True,
                              num_workers=2,
                              pin_memory=True)
    val_loader = DataLoader(ds_val, batch_size=128)

    accs = trainer.fit(train_loader, 5, val_loader=val_loader)['acc']
    return accs[-1], max(accs)
Beispiel #3
0
    def __init__(self,
                 model,
                 criterion,
                 optimizer,
                 lr_scheduler=None,
                 metrics=None,
                 test_metrics=None,
                 save_path=".",
                 name="Net",
                 fp16=False,
                 lr_step_on_iter=None):

        self.fp16 = fp16
        self.device = 'cuda' if CUDA else 'cpu'
        model.to(self.device)
        if self.fp16:
            from apex import amp
            model, optimizer = amp.initialize(model,
                                              optimizer,
                                              opt_level="O1",
                                              verbosity=0)

        self.model = model
        self.criterion = criterion
        self.optimizer = optimizer
        self.lr_scheduler = lr_scheduler
        self.metrics = metrics or {}
        self.test_metrics = test_metrics
        if test_metrics is None:
            self.test_metrics = metrics.copy()
            if 'loss' in metrics and isinstance(metrics['loss'], TrainLoss):
                self.test_metrics['loss'] = Loss(criterion=criterion)
        self.save_path = os.path.join(save_path, 'trainer')
        self.name = name
        self.lr_step_on_iter = lr_step_on_iter

        current_time = datetime.now().strftime('%b%d_%H-%M-%S')
        log_dir = os.path.join(save_path, 'runs', self.name, current_time)
        self.writer = SummaryWriter(log_dir)

        self.metric_history = defaultdict(list)
        self._timer = Timer()
        self._epochs = 0

        self._verbose = True
Beispiel #4
0
                      lr=3e-4,
                      betas=(0.5, 0.999),
                      weight_decay=1e-3)
optimizer_model = SGD(model.parameters(),
                      0.025,
                      momentum=0.9,
                      weight_decay=3e-4)
lr_scheduler = CosineAnnealingLR(optimizer_model, T_max=50, eta_min=0.001)

metrics = {
    "loss": TrainLoss(),
    "acc": Accuracy(),
}

test_metrics = {
    "loss": Loss(criterion),
    "acc": Accuracy(),
}

trainer = DARTSTrainer(model,
                       criterion, [optimizer_arch, optimizer_model],
                       lr_scheduler,
                       metrics,
                       test_metrics,
                       save_path='checkpoints/DARTS')


def tau_schedule(engine, trainer):
    iteration = engine.state.iteration
    iters_per_epoch = engine.state.epoch_length
    steps = iteration / iters_per_epoch
    cfg.Model.num_classes = num_classes
    model = get_model(cfg.Model, horch.models.cifar)

    criterion = CrossEntropyLoss(non_sparse=use_mix,
                                 label_smoothing=cfg.get("label_smooth"))

    epochs = cfg.epochs
    optimizer = get_optimizer(cfg.Optimizer, model.parameters())
    lr_scheduler = get_lr_scheduler(cfg.LRScheduler, optimizer, epochs)

    train_metrics = {'loss': TrainLoss()}
    if not use_mix:
        train_metrics['acc'] = Accuracy()

    test_metrics = {
        'loss': Loss(CrossEntropyLoss()),
        'acc': Accuracy(),
    }

    work_dir = fmt_path(cfg.get("work_dir"))
    trainer = Trainer(model,
                      criterion,
                      optimizer,
                      lr_scheduler,
                      train_metrics,
                      test_metrics,
                      work_dir=work_dir,
                      fp16=fp16,
                      device=cfg.get("device", 'auto'))

    if args.resume:
Beispiel #6
0
                weight_decay=1e-4,
                nesterov=True)
# lr_scheduler = MultiStepLR(optimizer, [10, 20], gamma=0.1)
lr_scheduler = CosineAnnealingLR(optimizer,
                                 T_max=30,
                                 eta_min=0.001,
                                 warmup=5,
                                 warmup_eta_min=0.001)

metrics = {
    'loss': TrainLoss(),
    'acc': Accuracy(),
}

test_metrics = {
    'loss': Loss(criterion),
    'acc': Accuracy(),
}

trainer = Trainer(net,
                  criterion,
                  optimizer,
                  lr_scheduler,
                  metrics=metrics,
                  test_metrics=test_metrics,
                  work_dir="./checkpoints/MNIST-LeNet5")
# summary(net, (1, 32, 32))

train_loader = DataLoader(ds_train,
                          batch_size=128,
                          shuffle=True,
Beispiel #7
0
ds_test = CIFAR10(data_home, train=False, download=True, transform=test_transform)

batch_size = 128
train_loader = DataLoader(ds_train, batch_size=batch_size, shuffle=True, pin_memory=True, num_workers=2)
test_loader = DataLoader(ds_test, batch_size=batch_size * 8, shuffle=False, pin_memory=True, num_workers=2)

net = ResNet(28, 10)
criterion = CrossEntropyLoss()

epochs = 200
base_lr = 0.1
optimizer = SGD(net.parameters(), lr=base_lr, momentum=0.9, weight_decay=5e-4)
lr_scheduler = CosineAnnealingLR(optimizer, epochs, min_lr=0)


train_metrics = {
    "loss": TrainLoss(),
    "acc": Accuracy(),
}

eval_metrics = {
    "loss": Loss(CrossEntropyLoss()),
    "acc": Accuracy(),
}

learner = CNNLearner(
    net, criterion, optimizer, lr_scheduler,
    train_metrics=train_metrics, eval_metrics=eval_metrics,
    work_dir=gpath('models/WRN'), fp16=True)

learner.fit(train_loader, epochs, test_loader, val_freq=1)
Beispiel #8
0
def main():
    torch.backends.cudnn.enabled = True
    torch.backends.cudnn.benchmark = True
    torch.backends.cudnn.deterministic = False
    manual_seed(args.seed)

    train_transform = Compose([
        RandomCrop(32, padding=4),
        RandomHorizontalFlip(),
        ToTensor(),
        Normalize([0.491, 0.482, 0.447], [0.247, 0.243, 0.262]),
    ])

    ds = CIFAR10(root=args.data, train=True, download=True)

    ds_train, ds_search = train_test_split(
        ds, test_ratio=0.5, shuffle=True, random_state=args.seed,
        transform=train_transform, test_transform=train_transform)

    train_queue = DataLoader(
        ds_train, batch_size=args.batch_size, pin_memory=True, shuffle=True, num_workers=2)

    valid_queue = DataLoader(
        ds_search, batch_size=args.batch_size, pin_memory=True, shuffle=True, num_workers=2)

    set_defaults({
        'relu': {
            'inplace': False,
        },
        'bn': {
            'affine': False,
        }
    })
    model = Network(args.init_channels, args.layers, num_classes=CIFAR_CLASSES)
    criterion = nn.CrossEntropyLoss()

    optimizer_arch = Adam(
        model.arch_parameters(),
        lr=args.arch_learning_rate,
        betas=(0.5, 0.999),
        weight_decay=args.arch_weight_decay)
    optimizer_model = SGD(
        model.model_parameters(),
        args.learning_rate,
        momentum=args.momentum,
        weight_decay=args.weight_decay)

    scheduler = CosineLR(
        optimizer_model, float(args.epochs), min_lr=args.learning_rate_min)

    train_metrics = {
        "loss": TrainLoss(),
        "acc": Accuracy(),
    }

    eval_metrics = {
        "loss": Loss(criterion),
        "acc": Accuracy(),
    }

    learner = DARTSLearner(model, criterion, optimizer_arch, optimizer_model, scheduler,
                           train_metrics=train_metrics, eval_metrics=eval_metrics,
                           search_loader=valid_queue, grad_clip_norm=5.0, work_dir='models')

    for epoch in range(args.epochs):
        scheduler.step()
        lr = scheduler.get_lr()[0]
        logging.info('epoch %d lr %e', epoch, lr)

        genotype = model.genotype()
        logging.info('genotype = %s', genotype)

        print(F.softmax(model.alphas_normal, dim=-1))
        print(F.softmax(model.alphas_reduce, dim=-1))
        print(F.softmax(model.betas_normal[2:5], dim=-1))
        # training

        train_acc, train_obj = train(learner, train_queue, epoch)
        logging.info('train_acc %f', train_acc)

        utils.save(model, os.path.join(args.save, 'weights.pt'))
Beispiel #9
0
    net = eval(cfg.Model)(**cfg.get(cfg.Model))

    criterion = CrossEntropyLoss(label_smoothing=cfg.get("label_smooth"))

    optimizer = get_optimizer(cfg.Optimizer, net)
    lr_scheduler = get_lr_scheduler(cfg.LRScheduler, optimizer)

    mix = get_mix(cfg.get("Mix"))

    metrics = {
        'loss': TrainLoss(),
        'acc': Accuracy(mix),
    }

    test_metrics = {
        'loss': Loss(nn.CrossEntropyLoss()),
        'acc': Accuracy(),
    }

    trainer = Trainer(net,
                      criterion,
                      optimizer,
                      lr_scheduler,
                      metrics,
                      test_metrics,
                      save_path=cfg.save_path,
                      mix=mix)

    if args.resume:
        if args.resume == 'default':
            trainer.resume()