def main(): args = parse_args() fn_h5, grp_name = parse_h5(args.output, 'output') # check if the group is already present (and not empty) in the output file if check_output(fn_h5, grp_name, args.overwrite): return # Load the cost function from the HDF5 file cost, used_volume = load_cost(args.cost) # Find the optimal charges results = {} results['x'] = cost.solve(args.qtot, args.ridge) results['charges'] = results['x'][:cost.natom] # Related properties results['cost'] = cost.value(results['x']) if results['cost'] < 0: results['rmsd'] = 0.0 else: results['rmsd'] = (results['cost'] / used_volume)**0.5 # Worst case stuff results['cost_worst'] = cost.worst(0.0) if results['cost_worst'] < 0: results['rmsd_worst'] = 0.0 else: results['rmsd_worst'] = (results['cost_worst'] / used_volume)**0.5 # Write some things on screen if log.do_medium: log('Important parameters:') log.hline() log('RMSD charges: %10.5e' % np.sqrt( (results['charges']**2).mean())) log('RMSD ESP: %10.5e' % results['rmsd']) log('Worst RMSD ESP: %10.5e' % results['rmsd_worst']) log.hline() # Perform a symmetry analysis if requested if args.symmetry is not None: mol_pot = IOData.from_file(args.symmetry[0]) mol_sym = IOData.from_file(args.symmetry[1]) if not hasattr(mol_sym, 'symmetry'): raise ValueError('No symmetry information found in %s.' % args.symmetry[1]) aim_results = {'charges': results['charges']} sym_results = symmetry_analysis(mol_pot.coordinates, mol_pot.cell, mol_sym.symmetry, aim_results) results['symmetry'] = sym_results # Store the results in an HDF5 file write_script_output(fn_h5, grp_name, results, args)
def main(): args = parse_args() fn_h5, grp_name = parse_h5(args.output, 'output') # check if the group is already present (and not empty) in the output file if check_output(fn_h5, grp_name, args.overwrite): return # Load the cost function from the HDF5 file cost, used_volume = load_cost(args.cost) # Find the optimal charges results = {} results['x'] = cost.solve(args.qtot, args.ridge) results['charges'] = results['x'][:cost.natom] # Related properties results['cost'] = cost.value(results['x']) if results['cost'] < 0: results['rmsd'] = 0.0 else: results['rmsd'] = (results['cost']/used_volume)**0.5 # Worst case stuff results['cost_worst'] = cost.worst(0.0) if results['cost_worst'] < 0: results['rmsd_worst'] = 0.0 else: results['rmsd_worst'] = (results['cost_worst']/used_volume)**0.5 # Write some things on screen if log.do_medium: log('Important parameters:') log.hline() log('RMSD charges: %10.5e' % np.sqrt((results['charges']**2).mean())) log('RMSD ESP: %10.5e' % results['rmsd']) log('Worst RMSD ESP: %10.5e' % results['rmsd_worst']) log.hline() # Perform a symmetry analysis if requested if args.symmetry is not None: sys = System.from_file(args.symmetry[0]) sys_sym = System.from_file(args.symmetry[1]) sym = sys_sym.extra.get('symmetry') if sym is None: raise ValueError('No symmetry information found in %s.' % args.symmetry[1]) sys_results = {'charges': results['charges']} sym_results = symmetry_analysis(sys, sym, sys_results) results['symmetry'] = sym_results sys.extra['symmetry'] = sym # Store the results in an HDF5 file write_script_output(fn_h5, grp_name, results, args)
def main(): args = parse_args() fn_h5, grp_name = parse_h5(args.output, 'output') # check if the group is already present (and not empty) in the output file if check_output(fn_h5, grp_name, args.overwrite): return # Load the charges from the HDF5 file charges = load_charges(args.charges) # Load the uniform grid and the coordintes ugrid, coordinates = load_ugrid_coordinates(args.grid) ugrid.pbc[:] = 1 # enforce 3D periodic # Fix total charge if requested if args.qtot is not None: charges -= (charges.sum() - args.qtot)/len(charges) # Store parameters in output results = {} results['qtot'] = charges.sum() # Determine the grid specification results['ugrid'] = ugrid # Ewald parameters rcut, alpha, gcut = parse_ewald_args(args) # Some screen info if log.do_medium: log('Important parameters:') log.hline() log('Number of grid points: %12i' % ugrid.size) log('Grid shape: [%8i, %8i, %8i]' % tuple(ugrid.shape)) log('Ewald real cutoff: %12.5e' % rcut) log('Ewald alpha: %12.5e' % alpha) log('Ewald reciprocal cutoff: %12.5e' % gcut) log.hline() # TODO: add summation ranges log('Computing ESP (may take a while)') # Allocate and compute ESP grid esp = np.zeros(ugrid.shape, float) compute_esp_grid_cube(ugrid, esp, coordinates, charges, rcut, alpha, gcut) results['esp'] = esp # Store the results in an HDF5 file write_script_output(fn_h5, grp_name, results, args)
def main(): args = parse_args() fn_h5, grp_name = parse_h5(args.output, 'output') # check if the group is already present (and not empty) in the output file if check_output(fn_h5, grp_name, args.overwrite): return # Load the charges from the HDF5 file charges = load_charges(args.charges) # Load the uniform grid and the coordintes ugrid, coordinates = load_ugrid_coordinates(args.grid) ugrid.pbc[:] = 1 # enforce 3D periodic # Fix total charge if requested if args.qtot is not None: charges -= (charges.sum() - args.qtot) / len(charges) # Store parameters in output results = {} results['qtot'] = charges.sum() # Determine the grid specification results['ugrid'] = ugrid # Ewald parameters rcut, alpha, gcut = parse_ewald_args(args) # Some screen info if log.do_medium: log('Important parameters:') log.hline() log('Number of grid points: %12i' % ugrid.size) log('Grid shape: [%8i, %8i, %8i]' % tuple(ugrid.shape)) log('Ewald real cutoff: %12.5e' % rcut) log('Ewald alpha: %12.5e' % alpha) log('Ewald reciprocal cutoff: %12.5e' % gcut) log.hline() # TODO: add summation ranges log('Computing ESP (may take a while)') # Allocate and compute ESP grid esp = np.zeros(ugrid.shape, float) compute_esp_grid_cube(ugrid, esp, coordinates, charges, rcut, alpha, gcut) results['esp'] = esp # Store the results in an HDF5 file write_script_output(fn_h5, grp_name, results, args)
def main(): args = parse_args() fn_h5, grp_name = parse_h5(args.output, 'output') # check if the group is already present (and not empty) in the output file if check_output(fn_h5, grp_name, args.overwrite): return # Load the cost function from the HDF5 file cost, used_volume = load_cost(args.cost) # Load the charges from the HDF5 file charges = load_charges(args.charges) # Fix total charge if requested if args.qtot is not None: charges -= (charges.sum() - args.qtot) / len(charges) # Store parameters in output results = {} results['qtot'] = charges.sum() # Fitness of the charges results['cost'] = cost.value_charges(charges) if results['cost'] < 0: results['rmsd'] = 0.0 else: results['rmsd'] = (results['cost'] / used_volume)**0.5 # Worst case stuff results['cost_worst'] = cost.worst(0.0) if results['cost_worst'] < 0: results['rmsd_worst'] = 0.0 else: results['rmsd_worst'] = (results['cost_worst'] / used_volume)**0.5 # Write some things on screen if log.do_medium: log('RMSD charges: %10.5e' % np.sqrt( (charges**2).mean())) log('RMSD ESP: %10.5e' % results['rmsd']) log('Worst RMSD ESP: %10.5e' % results['rmsd_worst']) log.hline() # Store the results in an HDF5 file write_script_output(fn_h5, grp_name, results, args)
def main(): args = parse_args() fn_h5, grp_name = parse_h5(args.output, 'output') # check if the group is already present (and not empty) in the output file if check_output(fn_h5, grp_name, args.overwrite): return # Load the cost function from the HDF5 file cost, used_volume = load_cost(args.cost) # Find the optimal charges results = {} # MODIFICATION HERE results['x'] = cost.solve(args.qtot, args.ridge) results['charges'] = results['x'][:cost.natom] # Related properties results['cost'] = cost.value(results['x']) if results['cost'] < 0: results['rmsd'] = 0.0 else: results['rmsd'] = (results['cost'] / used_volume)**0.5 # Worst case stuff results['cost_worst'] = cost.worst(0.0) if results['cost_worst'] < 0: results['rmsd_worst'] = 0.0 else: results['rmsd_worst'] = (results['cost_worst'] / used_volume)**0.5 # Write some things on screen if log.do_medium: log('Important parameters:') log.hline() log('RMSD charges: %10.5e' % np.sqrt( (results['charges']**2).mean())) log('RMSD ESP: %10.5e' % results['rmsd']) log('Worst RMSD ESP: %10.5e' % results['rmsd_worst']) log.hline() # Store the results in an HDF5 file write_script_output(fn_h5, grp_name, results, args)
def main(): args = parse_args() fn_h5, grp_name = parse_h5(args.output, 'output') # check if the group is already present (and not empty) in the output file if check_output(fn_h5, grp_name, args.overwrite): return # Load the cost function from the HDF5 file cost, used_volume = load_cost(args.cost) # Load the charges from the HDF5 file charges = load_charges(args.charges) # Fix total charge if requested if args.qtot is not None: charges -= (charges.sum() - args.qtot)/len(charges) # Store parameters in output results = {} results['qtot'] = charges.sum() # Fitness of the charges results['cost'] = cost.value_charges(charges) if results['cost'] < 0: results['rmsd'] = 0.0 else: results['rmsd'] = (results['cost']/used_volume)**0.5 # Worst case stuff results['cost_worst'] = cost.worst(0.0) if results['cost_worst'] < 0: results['rmsd_worst'] = 0.0 else: results['rmsd_worst'] = (results['cost_worst']/used_volume)**0.5 # Write some things on screen if log.do_medium: log('RMSD charges: %10.5e' % np.sqrt((charges**2).mean())) log('RMSD ESP: %10.5e' % results['rmsd']) log('Worst RMSD ESP: %10.5e' % results['rmsd_worst']) log.hline() # Store the results in an HDF5 file write_script_output(fn_h5, grp_name, results, args)
def log(self): log(" Nr Pop Chg Energy Ionization Affinity") log.hline() for number, cases in sorted(self.all.iteritems()): for pop, energy in sorted(cases.iteritems()): energy_prev = cases.get(pop - 1) if energy_prev is None: ip_str = "" else: ip_str = "% 18.10f" % (energy_prev - energy) energy_next = cases.get(pop + 1) if energy_next is None: ea_str = "" else: ea_str = "% 18.10f" % (energy - energy_next) log("%3i %3i %+3i % 18.10f %18s %18s" % (number, pop, number - pop, energy, ip_str, ea_str)) log.blank()
def main(): args = parse_args() fn_h5, grp_name = parse_h5(args.output, 'output') # check if the group is already present (and not empty) in the output file if check_output(fn_h5, grp_name, args.overwrite): return # Load the cost function from the HDF5 file cost, used_volume = load_cost(args.cost) # Find the optimal charges results = {} results['x'] = cost.solve(args.qtot, args.ridge) results['charges'] = results['x'][:cost.natom] # Related properties results['cost'] = cost.value(results['x']) if results['cost'] < 0: results['rmsd'] = 0.0 else: results['rmsd'] = (results['cost']/used_volume)**0.5 # Worst case stuff results['cost_worst'] = cost.worst(0.0) if results['cost_worst'] < 0: results['rmsd_worst'] = 0.0 else: results['rmsd_worst'] = (results['cost_worst']/used_volume)**0.5 # Write some things on screen if log.do_medium: log('Important parameters:') log.hline() log('RMSD charges: %10.5e' % np.sqrt((results['charges']**2).mean())) log('RMSD ESP: %10.5e' % results['rmsd']) log('Worst RMSD ESP: %10.5e' % results['rmsd_worst']) log.hline() # Store the results in an HDF5 file write_script_output(fn_h5, grp_name, results, args)
def log(self): log(' Nr Pop Chg Energy Ionization Affinity' ) log.hline() for number, cases in sorted(self.all.iteritems()): for pop, energy in sorted(cases.iteritems()): energy_prev = cases.get(pop - 1) if energy_prev is None: ip_str = '' else: ip_str = '% 18.10f' % (energy_prev - energy) energy_next = cases.get(pop + 1) if energy_next is None: ea_str = '' else: ea_str = '% 18.10f' % (energy - energy_next) log('%3i %3i %+3i % 18.10f %18s %18s' % (number, pop, number - pop, energy, ip_str, ea_str)) log.blank()
def main(): args = parse_args() fn_h5, grp_name = parse_h5(args.output, 'output') # check if the group is already present (and not empty) in the output file if check_output(fn_h5, grp_name, args.overwrite): return # Load the potential data if log.do_medium: log('Loading potential array') mol_pot = IOData.from_file(args.cube) if not isinstance(mol_pot.grid, UniformGrid): raise TypeError('The specified file does not contain data on a rectangular grid.') mol_pot.grid.pbc[:] = parse_pbc(args.pbc) # correct pbc esp = mol_pot.cube_data # Reduce the grid if required if args.stride > 1: esp, mol_pot.grid = reduce_data(esp, mol_pot.grid, args.stride, args.chop) # Fix sign if args.sign: esp *= -1 # Some screen info if log.do_medium: log('Important parameters:') log.hline() log('Number of grid points: %12i' % np.product(mol_pot.grid.shape)) log('Grid shape: [%8i, %8i, %8i]' % tuple(mol_pot.grid.shape)) log('PBC: [%8i, %8i, %8i]' % tuple(mol_pot.grid.pbc)) log.hline() # Construct the weights for the ESP Cost function. wdens = parse_wdens(args.wdens) if wdens is not None: if log.do_medium: log('Loading density array') # either the provided density or a built-in prodensity rho = load_rho(mol_pot.coordinates, mol_pot.numbers, wdens[0], mol_pot.grid, args.stride, args.chop) wdens = (rho,) + wdens[1:] if log.do_medium: log('Constructing weight function') weights = setup_weights(mol_pot.coordinates, mol_pot.numbers, mol_pot.grid, dens=wdens, near=parse_wnear(args.wnear), far=parse_wnear(args.wfar), ) # write the weights to a cube file if requested if args.wsave is not None: if log.do_medium: log(' Saving weights array ') # construct a new data dictionary that contains all info for the cube file mol_weights = mol_pot.copy() mol_weights.cube_data = weights mol_weights.to_file(args.wsave) # rescale weights such that the cost function is the mean-square-error if weights.max() == 0.0: raise ValueError('No points with a non-zero weight were found') wmax = weights.min() wmin = weights.max() used_volume = mol_pot.grid.integrate(weights) # Some screen info if log.do_medium: log('Important parameters:') log.hline() log('Used number of grid points: %12i' % (weights>0).sum()) log('Used volume: %12.5f' % used_volume) log('Used volume/atom: %12.5f' % (used_volume/mol_pot.natom)) log('Lowest weight: %12.5e' % wmin) log('Highest weight: %12.5e' % wmax) log('Max weight at edge: %12.5f' % max_at_edge(weights, mol_pot.grid.pbc)) # Ewald parameters rcut, alpha, gcut = parse_ewald_args(args) # Some screen info if log.do_medium: log('Ewald real cutoff: %12.5e' % rcut) log('Ewald alpha: %12.5e' % alpha) log('Ewald reciprocal cutoff: %12.5e' % gcut) log.hline() # Construct the cost function if log.do_medium: log('Setting up cost function (may take a while) ') cost = ESPCost.from_grid_data(mol_pot.coordinates, mol_pot.grid, esp, weights, rcut, alpha, gcut) # Store cost function info results = {} results['cost'] = cost results['used_volume'] = used_volume # Store cost function properties results['evals'] = np.linalg.eigvalsh(cost._A) abs_evals = abs(results['evals']) if abs_evals.min() == 0.0: results['cn'] = 0.0 else: results['cn'] = abs_evals.max()/abs_evals.min() # Report some on-screen info if log.do_medium: log('Important parameters:') log.hline() log('Lowest abs eigen value: %12.5e' % abs_evals.min()) log('Highest abs eigen value: %12.5e' % abs_evals.max()) log('Condition number: %12.5e' % results['cn']) log.hline() # Store the results in an HDF5 file write_script_output(fn_h5, grp_name, results, args)