def test_Project_Works(self): X = self.makeh5(np.array([[1, 2], [3, 4], [5, 6], [7, 8]])) T = self.makeh5(np.array([[1], [2], [3], [4]])) hpelm = HPELM(2, 1) hpelm.add_neurons(1, "lin") hpelm.train(X, T) fH = self.makefile() hpelm.project(X, fH)
def test_PredictAsync_Works(self): X = self.makeh5(np.array([[1, 2], [3, 4], [5, 6], [7, 8]])) T = self.makeh5(np.array([[1], [2], [3], [4]])) hpelm = HPELM(2, 1) hpelm.add_neurons(1, "lin") hpelm.train(X, T) fY = self.makefile() hpelm.predict_async(X, fY)
def test_TrainIstart_HasEffect(self): X = self.makeh5(np.array([[1, 2], [3, 4], [5, 6]])) T = self.makeh5(np.array([[3], [2], [3]])) hpelm = HPELM(2, 1) hpelm.add_neurons(1, "lin") hpelm.train(X, T) B1 = hpelm.nnet.get_B() hpelm.train(X, T, istart=1) B2 = hpelm.nnet.get_B() self.assertFalse(np.allclose(B1, B2), "iStart index does not work")
def test_TrainIcount_HasEffect(self): X = self.makeh5(np.array([[1, 2], [3, 4], [5, 6]])) T = self.makeh5(np.array([[3], [2], [3]])) hpelm = HPELM(2, 1) hpelm.add_neurons(1, "lin") hpelm.train(X, T) B1 = hpelm.nnet.get_B() hpelm.train(X, T, icount=2) B2 = hpelm.nnet.get_B() self.assertFalse(np.allclose(B1, B2), "iCount index does not work")
def test_WeightedClassError_Works(self): X = self.makeh5(np.array([1, 2, 3])) T = self.makeh5(np.array([[0, 1], [0, 1], [1, 0]])) Y = self.makeh5(np.array([[0, 1], [0.4, 0.6], [0, 1]])) # here class 0 is totally incorrect, and class 1 is totally correct w = (9, 1) hpelm = HPELM(1, 2) hpelm.add_neurons(1, "lin") hpelm.train(X, T, "wc", w=w) e = hpelm.error(T, Y) np.testing.assert_allclose(e, 0.9)
def test_OneDimensionTargets_RunsCorrectly(self): X = self.makeh5(np.array([1, 2, 3])) T = self.makeh5(np.array([1, 2, 3])) hpelm = HPELM(1, 1) hpelm.add_neurons(1, "lin") hpelm.train(X, T)
def test_TrainIcount_Works(self): X = self.makeh5(np.array([[1, 2], [3, 4], [5, 6]])) T = self.makeh5(np.array([[1], [2], [3]])) hpelm = HPELM(2, 1) hpelm.add_neurons(1, "lin") hpelm.train(X, T, icount=2)
def start(): pairs = MapperUtil.get_allpairs() # Get pairs starting from 0th line if not pairs: print("No pairs found.") sys.exit() p = pyaudio.PyAudio() # Create a PyAudio session # Create a stream stream = p.open(format=FORMAT, channels=CHANNELS, rate=RATE, output=True) #H2V_cursor = NeuralNetUtil.get_neurons("H2V") elmH2V = None # Loop over the pairs coming from CROSSMODAL for pair in pairs: #time.sleep(0.5) # Wait 0.5 seconds to prevent aggressive loop print pair if pair['direction'] == "H2V": print "____________________________________________________________\n" print pair['timestamp1'] hearing_memory = HearingMemoryUtil.get_memory( pair['timestamp1']) hearing_memory = hearing_memory.next()['data'] #print hearing_memory.next()['data'] #chunky_array = numpy.fromstring(hearing_memory.next()['data'], 'int16') #print chunky_array stream.write(hearing_memory) numpy_audio = numpy.fromstring(hearing_memory, numpy.uint8) #print numpy_audio print "Audio: ", numpy_audio.shape #print numpy.transpose(numpy_audio.reshape((numpy_audio.shape[0],1))).shape vision_memory = VisionMemoryUtil.get_memory(pair['timestamp2']) vision_memory = vision_memory.next() frame_amodal = numpy.fromstring(vision_memory['amodal'], numpy.uint8) print "Frame Threshold: ", frame_amodal.shape cv2.imshow("Frame Threshhold", frame_amodal.reshape(360, 640)) cv2.moveWindow("Frame Threshhold", 50, 100) frame_color = numpy.fromstring(vision_memory['color'], numpy.uint8) print "Frame Delta Colored: ", frame_color.shape cv2.imshow("Frame Delta Colored", frame_color.reshape(360, 640, 3)) cv2.moveWindow("Frame Delta Colored", 1200, 100) key = cv2.waitKey(500) & 0xFF #time.sleep(2.0) modulo = numpy_audio.shape[0] % RATE numpy_audio = numpy_audio[:-modulo] for one_second in numpy.array_split( numpy_audio, int(numpy_audio.shape[0] / RATE)): X = numpy.transpose( one_second.reshape((one_second.shape[0], 1))) T = numpy.transpose( frame_amodal.reshape((frame_amodal.shape[0], 1))) X = X.astype(numpy.float32, copy=False) T = T.astype(numpy.float32, copy=False) X[0] = X[0] / X[0].max() T[0] = T[0] / T[0].max() print X.shape print T.shape if elmH2V is None: elmH2V = HPELM(X.shape[1], T.shape[1]) if os.path.exists( os.path.expanduser("~/CerebralCortexH2V.pkl")): #elmH2V.nnet.neurons = H2V_cursor.next()['neurons'] elmH2V.load( os.path.expanduser("~/CerebralCortexH2V.pkl")) else: elmH2V.add_neurons(100, "sigm") elmH2V.train(X, T, "LOO") print elmH2V.predict(X) cv2.imshow( ">>>PREDICTION<<<", numpy.transpose(elmH2V.predict(X)).reshape(360, 640)) cv2.moveWindow(">>>PREDICTION<<<", 50, 550) print elmH2V.nnet.neurons elmH2V.save(os.path.expanduser("~/CerebralCortexH2V.pkl"))
def start(): pairs = MapperUtil.get_allpairs() # Get pairs starting from 0th line if not pairs: print ("No pairs found.") sys.exit() p = pyaudio.PyAudio() # Create a PyAudio session # Create a stream stream = p.open(format=FORMAT, channels=CHANNELS, rate=RATE, output=True) #H2V_cursor = NeuralNetUtil.get_neurons("H2V") elmH2V = None # Loop over the pairs coming from CROSSMODAL for pair in pairs: #time.sleep(0.5) # Wait 0.5 seconds to prevent aggressive loop print pair if pair['direction'] == "H2V": print "____________________________________________________________\n" print pair['timestamp1'] hearing_memory = HearingMemoryUtil.get_memory(pair['timestamp1']) hearing_memory = hearing_memory.next()['data'] #print hearing_memory.next()['data'] #chunky_array = numpy.fromstring(hearing_memory.next()['data'], 'int16') #print chunky_array stream.write(hearing_memory) numpy_audio = numpy.fromstring(hearing_memory, numpy.uint8) #print numpy_audio print "Audio: ",numpy_audio.shape #print numpy.transpose(numpy_audio.reshape((numpy_audio.shape[0],1))).shape vision_memory = VisionMemoryUtil.get_memory(pair['timestamp2']) vision_memory = vision_memory.next() frame_amodal = numpy.fromstring(vision_memory['amodal'], numpy.uint8) print "Frame Threshold: ",frame_amodal.shape cv2.imshow("Frame Threshhold", frame_amodal.reshape(360,640)) cv2.moveWindow("Frame Threshhold",50,100) frame_color = numpy.fromstring(vision_memory['color'], numpy.uint8) print "Frame Delta Colored: ",frame_color.shape cv2.imshow("Frame Delta Colored", frame_color.reshape(360,640,3)) cv2.moveWindow("Frame Delta Colored",1200,100) key = cv2.waitKey(500) & 0xFF #time.sleep(2.0) modulo = numpy_audio.shape[0] % RATE numpy_audio = numpy_audio[:-modulo] for one_second in numpy.array_split(numpy_audio, int(numpy_audio.shape[0] / RATE)): X = numpy.transpose(one_second.reshape((one_second.shape[0],1))) T = numpy.transpose(frame_amodal.reshape((frame_amodal.shape[0],1))) X = X.astype(numpy.float32, copy=False) T = T.astype(numpy.float32, copy=False) X[0] = X[0] / X[0].max() T[0] = T[0] / T[0].max() print X.shape print T.shape if elmH2V is None: elmH2V = HPELM(X.shape[1],T.shape[1]) if os.path.exists(os.path.expanduser("~/CerebralCortexH2V.pkl")): #elmH2V.nnet.neurons = H2V_cursor.next()['neurons'] elmH2V.load(os.path.expanduser("~/CerebralCortexH2V.pkl")) else: elmH2V.add_neurons(100, "sigm") elmH2V.train(X, T, "LOO") print elmH2V.predict(X) cv2.imshow(">>>PREDICTION<<<", numpy.transpose(elmH2V.predict(X)).reshape(360,640)) cv2.moveWindow(">>>PREDICTION<<<",50,550) print elmH2V.nnet.neurons elmH2V.save(os.path.expanduser("~/CerebralCortexH2V.pkl"))
def test_ZeroInputs_RunsCorrectly(self): X = self.makeh5(np.array([[0, 0], [0, 0], [0, 0]])) T = self.makeh5(np.array([1, 2, 3])) hpelm = HPELM(2, 1) hpelm.add_neurons(1, "lin") hpelm.train(X, T)
def test_HPELM_tprint(self): X = self.makeh5(np.array([1, 2, 3, 1, 2, 3])) T = self.makeh5(np.array([[1, 0], [1, 0], [1, 0], [0, 1], [0, 1], [0, 1]])) hpelm = HPELM(1, 2, batch=2, tprint=0) hpelm.add_neurons(1, "lin") hpelm.train(X, T)
def test_WeightedClassification_DefaultWeightsWork(self): X = self.makeh5(np.array([1, 2, 3, 1, 2, 3])) T = self.makeh5(np.array([[1, 0], [1, 0], [1, 0], [0, 1], [0, 1], [0, 1]])) hpelm = HPELM(1, 2) hpelm.add_neurons(1, "lin") hpelm.train(X, T, 'wc')
def test_OneDimensionTargets2_RunsCorrectly(self): X = self.makeh5(np.array([[1, 2], [3, 4], [5, 6]])) T = self.makeh5(np.array([[0], [0], [0]])) hpelm = HPELM(2, 1) hpelm.add_neurons(1, "lin") hpelm.train(X, T)