import random positive_digit = 6 name = 'covtype-%d' % positive_digit num_folds = 5 budget = 150 npos = 500 nneg = 1000 search = {'logC': [-8, 1], 'logGamma': [-8, 1]} covtype = sklearn.datasets.fetch_covtype() n = covtype.data.shape[0] positive_idx = [i for i in range(n) if covtype.target[i] == positive_digit] negative_idx = [i for i in range(n) if not covtype.target[i] == positive_digit] # draw random subsamples positive_idx = random.sample(positive_idx, npos) negative_idx = random.sample(negative_idx, nneg) original_data = covtype.data[positive_idx + negative_idx, ...] data = original_data # + 10 * np.random.randn(original_data.shape[0], original_data.shape[1]) labels = [True] * len(positive_idx) + [False] * len(negative_idx) objfun = hpo.make_svm_objfun(data, labels, num_folds) hpo_search = hpo.svm_search_space(**search) hpo.setup_hpolib(hpo.negate(objfun), hpo_search, budget, name)
import optunity import numpy as np import hpolib_generator as hpo import cloudpickle as pickle from sklearn.datasets import load_digits positive_digit = 6 name='digits-%d' % positive_digit num_folds=5 budget = 150 search={'logC': [-8, 1], 'logGamma': [-8, 1]} digits = load_digits() n = digits.data.shape[0] positive_idx = [i for i in range(n) if digits.target[i] == positive_digit] negative_idx = [i for i in range(n) if not digits.target[i] == positive_digit] original_data = digits.data[positive_idx + negative_idx, ...] data = original_data + 10 * np.random.randn(original_data.shape[0], original_data.shape[1]) labels = [True] * len(positive_idx) + [False] * len(negative_idx) objfun = hpo.make_svm_objfun(data, labels, num_folds) hpo_search = hpo.svm_search_space(**search) hpo.setup_hpolib(hpo.negate(objfun), hpo_search, budget, name)