Beispiel #1
0
    def _analyse(self, mol, pdb, rtf, prm, traj, ftraj):
        t = Molecule(pdb)
        t.read(traj)
        t.filter('not water')
        t.write(ftraj)
        m = FFMolecule(filename=mol, rtf=rtf, prm=prm)
        m.read(ftraj)
        torsions = m.getRotatableDihedrals()
        # For each torsion
        for i in range(len(torsions)):
            # Create title
            title = '{}-{}-{}-{}'.format(m.name[torsions[i][0]], m.name[torsions[i][1]], m.name[torsions[i][2]],
                                         m.name[torsions[i][3]])
            # Measure
            (r, theta) = self._measure_torsion(torsions[i], m.coords)

            self._plot_scatter(r, theta, title)
            self._plot_hist(theta, title)
Beispiel #2
0
def main_parameterize(arguments=None):

    args = getArgumentParser().parse_args(args=arguments)

    if not os.path.exists(args.filename):
        raise ValueError('File %s cannot be found' % args.filename)

    method_map = {'GAFF': FFTypeMethod.GAFF, 'GAFF2': FFTypeMethod.GAFF2, 'CGENFF': FFTypeMethod.CGenFF_2b6}
    methods = [method_map[method] for method in args.forcefield]  # TODO: move into FFMolecule

    # Get RTF and PRM file names
    rtf, prm = None, None
    if args.rtf_prm:
        rtf, prm = args.rtf_prm

    # Create a queue for QM
    if args.queue == 'local':
        queue = LocalCPUQueue()
    elif args.queue == 'Slurm':
        queue = SlurmQueue(_configapp=args.code.lower())
    elif args.queue == 'LSF':
        queue = LsfQueue(_configapp=args.code.lower())
    elif args.queue == 'PBS':
        queue = PBSQueue()  # TODO: configure
    elif args.queue == 'AceCloud':
        queue = AceCloudQueue()  # TODO: configure
    else:
        raise NotImplementedError

    # Override default ncpus
    if args.ncpus:
        logger.info('Overriding ncpus to {}'.format(args.ncpus))
        queue.ncpu = args.ncpus

    # Create a QM object
    if args.code == 'Psi4':
        qm = Psi4()
    elif args.code == 'Gaussian':
        qm = Gaussian()
    else:
        raise NotImplementedError

    # This is for debugging only!
    if args.fake_qm:
        qm = FakeQM()
        logger.warning('Using FakeQM')

    # Set up the QM object
    qm.theory = args.theory
    qm.basis = args.basis
    qm.solvent = args.environment
    qm.queue = queue

    # List rotatable dihedral angles
    if args.list:

        mol = FFMolecule(args.filename, method=methods[0], netcharge=args.charge, rtf=rtf, prm=prm, qm=qm,
                         outdir=args.outdir)
        print('\n === Parameterizable dihedral angles of %s ===\n' % args.filename)
        with open('torsions.txt', 'w') as fh:
            for dihedral in mol.getRotatableDihedrals():
                dihedral_name = '%s-%s-%s-%s' % tuple(mol.name[dihedral])
                print('  '+dihedral_name)
                fh.write(dihedral_name+'\n')
        print()
        sys.exit(0)

    # Print arguments
    print('\n === Arguments ===\n')
    for key, value in vars(args).items():
        print('{:>12s}: {:s}'.format(key, str(value)))

    print('\n === Parameterizing %s ===\n' % args.filename)
    for method in methods:
        print(" === Fitting for %s ===\n" % method.name)

        # Create the molecule
        mol = FFMolecule(args.filename, method=method, netcharge=args.charge, rtf=rtf, prm=prm, qm=qm,
                         outdir=args.outdir)
        mol.printReport()

        # Copy the molecule to preserve initial coordinates
        mol_orig = mol.copy()

        # Update B3LYP to B3LYP-D3
        # TODO: this is silent and not documented stuff
        if qm.theory == 'B3LYP':
            qm.correction = 'D3'

        # Update basis sets
        # TODO: this is silent and not documented stuff
        if mol.netcharge < 0 and qm.solvent == 'vacuum':
            if qm.basis == '6-31G*':
                qm.basis = '6-31+G*'
            if qm.basis == 'cc-pVDZ':
                qm.basis = 'aug-cc-pVDZ'
            logger.info('Changing basis sets to %s' % qm.basis)

        # Minimize molecule
        if args.minimize:
            print('\n == Minimizing ==\n')
            mol.minimize()

        # Fit ESP charges
        if args.fit_charges:
            print('\n == Fitting ESP charges ==\n')

            # Set random number generator seed
            if args.seed:
                np.random.seed(args.seed)

            # Select the atoms with fixed charges
            fixed_atom_indices = []
            for fixed_atom_name in args.fix_charge:

                if fixed_atom_name not in mol.name:
                    raise ValueError('Atom %s is not found. Check --fix-charge arguments' % fixed_atom_name)

                for aton_index in range(mol.numAtoms):
                    if mol.name[aton_index] == fixed_atom_name:
                        fixed_atom_indices.append(aton_index)
                        logger.info('Charge of atom %s is fixed to %f' % (fixed_atom_name, mol.charge[aton_index]))

            # Fit ESP charges
            score, qm_dipole = mol.fitCharges(fixed=fixed_atom_indices)

            # Print results
            mm_dipole = mol.getDipole()
            score = np.sum((qm_dipole[:3] - mm_dipole[:3])**2)
            print('Charge fitting score: %f\n' % score)
            print('QM dipole: %f %f %f; %f' % tuple(qm_dipole))
            print('MM dipole: %f %f %f; %f' % tuple(mm_dipole))
            print('Dipole Chi^2 score: %f\n' % score)

        # Fit dihedral angle parameters
        if args.fit_dihedral:
            print('\n == Fitting dihedral angle parameters ==\n')

            # Set random number generator seed
            if args.seed:
                np.random.seed(args.seed)

            # Get all rotatable dihedrals
            all_dihedrals = mol.getRotatableDihedrals()

            # Choose which dihedrals to fit
            dihedrals = []
            all_dihedral_names = ['-'.join(mol.name[dihedral]) for dihedral in all_dihedrals]
            for dihedral_name in args.dihedral:
                if dihedral_name not in all_dihedral_names:
                    raise ValueError('%s is not recognized as a rotatable dihedral angle' % dihedral_name)
                dihedrals.append(all_dihedrals[all_dihedral_names.index(dihedral_name)])
            dihedrals = dihedrals if len(dihedrals) > 0 else all_dihedrals  # Set default to all dihedral angles

            # Fit the parameters
            mol.fitDihedrals(dihedrals, args.optimize_dihedral)

        # Output the FF parameters
        print('\n == Writing results ==\n')
        mol.writeParameters(mol_orig)

        # Write energy file
        energyFile = os.path.join(mol.outdir, 'parameters', method.name, mol.output_directory_name(), 'energies.txt')
        printEnergies(mol, energyFile)
        logger.info('Write energy file: %s' % energyFile)
Beispiel #3
0
def main_parameterize(arguments=None):

    args = getArgumentParser().parse_args(args=arguments)

    if not os.path.exists(args.filename):
        raise ValueError('File %s cannot be found' % args.filename)

    method_map = {
        'GAFF': FFTypeMethod.GAFF,
        'GAFF2': FFTypeMethod.GAFF2,
        'CGENFF': FFTypeMethod.CGenFF_2b6
    }
    methods = [method_map[method]
               for method in args.forcefield]  # TODO: move into FFMolecule

    # Get RTF and PRM file names
    rtf, prm = None, None
    if args.rtf_prm:
        rtf, prm = args.rtf_prm

    # Create a queue for QM
    if args.queue == 'local':
        queue = LocalCPUQueue()
    elif args.queue == 'Slurm':
        queue = SlurmQueue(_configapp=args.code.lower())
    elif args.queue == 'LSF':
        queue = LsfQueue(_configapp=args.code.lower())
    elif args.queue == 'PBS':
        queue = PBSQueue()  # TODO: configure
    elif args.queue == 'AceCloud':
        queue = AceCloudQueue()  # TODO: configure
        queue.groupname = args.groupname
        queue.hashnames = True
    else:
        raise NotImplementedError

    # Override default ncpus
    if args.ncpus:
        logger.info('Overriding ncpus to {}'.format(args.ncpus))
        queue.ncpu = args.ncpus
    if args.memory:
        logger.info('Overriding memory to {}'.format(args.memory))
        queue.memory = args.memory

    # Create a QM object
    if args.code == 'Psi4':
        qm = Psi4()
    elif args.code == 'Gaussian':
        qm = Gaussian()
    else:
        raise NotImplementedError

    # This is for debugging only!
    if args.fake_qm:
        qm = FakeQM2()
        logger.warning('Using FakeQM')

    # Set up the QM object
    qm.theory = args.theory
    qm.basis = args.basis
    qm.solvent = args.environment
    qm.queue = queue

    # List rotatable dihedral angles
    if args.list:

        mol = FFMolecule(args.filename,
                         method=methods[0],
                         netcharge=args.charge,
                         rtf=rtf,
                         prm=prm,
                         qm=qm,
                         outdir=args.outdir)
        print('\n === Parameterizable dihedral angles of %s ===\n' %
              args.filename)
        with open('torsions.txt', 'w') as fh:
            for dihedral in mol.getRotatableDihedrals():
                dihedral_name = '%s-%s-%s-%s' % tuple(mol.name[dihedral])
                print('  ' + dihedral_name)
                fh.write(dihedral_name + '\n')
        print()
        sys.exit(0)

    # Print arguments
    print('\n === Arguments ===\n')
    for key, value in vars(args).items():
        print('{:>12s}: {:s}'.format(key, str(value)))

    print('\n === Parameterizing %s ===\n' % args.filename)
    for method in methods:
        print(" === Fitting for %s ===\n" % method.name)

        # Create the molecule
        mol = FFMolecule(args.filename,
                         method=method,
                         netcharge=args.charge,
                         rtf=rtf,
                         prm=prm,
                         qm=qm,
                         outdir=args.outdir)
        mol.printReport()

        # Copy the molecule to preserve initial coordinates
        mol_orig = mol.copy()

        # Update B3LYP to B3LYP-D3
        # TODO: this is silent and not documented stuff
        if qm.theory == 'B3LYP':
            qm.correction = 'D3'

        # Update basis sets
        # TODO: this is silent and not documented stuff
        if mol.netcharge < 0 and qm.solvent == 'vacuum':
            if qm.basis == '6-31G*':
                qm.basis = '6-31+G*'
            if qm.basis == 'cc-pVDZ':
                qm.basis = 'aug-cc-pVDZ'
            logger.info('Changing basis sets to %s' % qm.basis)

        # Minimize molecule
        if args.minimize:
            print('\n == Minimizing ==\n')
            mol.minimize()

        # Fit ESP charges
        if args.fit_charges:
            print('\n == Fitting ESP charges ==\n')

            # Set random number generator seed
            if args.seed:
                np.random.seed(args.seed)

            # Select the atoms with fixed charges
            fixed_atom_indices = []
            for fixed_atom_name in args.fix_charge:

                if fixed_atom_name not in mol.name:
                    raise ValueError(
                        'Atom %s is not found. Check --fix-charge arguments' %
                        fixed_atom_name)

                for aton_index in range(mol.numAtoms):
                    if mol.name[aton_index] == fixed_atom_name:
                        fixed_atom_indices.append(aton_index)
                        logger.info('Charge of atom %s is fixed to %f' %
                                    (fixed_atom_name, mol.charge[aton_index]))

            # Fit ESP charges
            _, qm_dipole = mol.fitCharges(fixed=fixed_atom_indices)

            # Copy the new charges to the original molecule
            mol_orig.charge[:] = mol.charge

            # Print dipoles
            logger.info('QM dipole: %f %f %f; %f' % tuple(qm_dipole))
            mm_dipole = mol.getDipole()
            if np.all(np.isfinite(mm_dipole)):
                logger.info('MM dipole: %f %f %f; %f' % tuple(mm_dipole))
            else:
                logger.warning(
                    'MM dipole cannot be computed. Check if elements are detected correctly.'
                )

        # Fit dihedral angle parameters
        if args.fit_dihedral:
            print('\n == Fitting dihedral angle parameters ==\n')

            # Set random number generator seed
            if args.seed:
                np.random.seed(args.seed)

            # Get all rotatable dihedrals
            all_dihedrals = mol.getRotatableDihedrals()

            # Choose which dihedrals to fit
            dihedrals = []
            all_dihedral_names = [
                '-'.join(mol.name[dihedral]) for dihedral in all_dihedrals
            ]
            for dihedral_name in args.dihedral:
                if dihedral_name not in all_dihedral_names:
                    raise ValueError(
                        '%s is not recognized as a rotatable dihedral angle' %
                        dihedral_name)
                dihedrals.append(
                    all_dihedrals[all_dihedral_names.index(dihedral_name)])
            dihedrals = dihedrals if len(
                dihedrals
            ) > 0 else all_dihedrals  # Set default to all dihedral angles

            # Fit the parameters
            mol.fitDihedrals(dihedrals, args.optimize_dihedral)

        # Output the FF parameters
        print('\n == Writing results ==\n')
        mol.writeParameters(mol_orig)

        # Write energy file
        energyFile = os.path.join(mol.outdir, 'parameters', method.name,
                                  mol.output_directory_name(), 'energies.txt')
        printEnergies(mol, energyFile)
        logger.info('Write energy file: %s' % energyFile)