def compose( rfile, gfile, bfile, source_r, source_g, source_b, scales=(1.0, 1.0, 1.0), Q=1.0, alpha=1.0, masklevel=None, saturation="color", offset=0.0, backsub=False, vb=False, outfile="color.png", ): """ Compose RGB color image. """ # ------------------------------------------------------------------- if vb: print( "HumVI: Making color composite image of data in following files:", rfile, gfile, bfile, ) print("HumVI: Output will be written to", outfile) if masklevel is not None: print("HumVI: Masking stretched pixel values less than", masklevel) # Read in images, calibrated into flux units: band3 = humvi.channel(rfile, source_r) band2 = humvi.channel(gfile, source_g) band1 = humvi.channel(bfile, source_b) # Check shapes are equal: humvi.check_image_shapes(band1.image, band2.image, band3.image) # Subtract backgrounds (median, optional): if backsub: band1.subtract_background() band2.subtract_background() band3.subtract_background() # ------------------------------------------------------------------- # BUG: as it stands, this code assumes one file one channel, whereas # in practice we might like to be able to make composites based on # N bands. Need to overload + operator for channels? Calib etc will # need altering as well as image. red = band3 green = band2 blue = band1 # ------------------------------------------------------------------- # Set scales determining color balance in composite: rscale, gscale, bscale = humvi.normalize_scales(scales) red.set_scale(manually=rscale) green.set_scale(manually=gscale) blue.set_scale(manually=bscale) if vb: print("HumVI: Scales normalized to:", red.scale, green.scale, blue.scale) # Scale images - only do once: red.apply_scale() green.apply_scale() blue.apply_scale() # - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - # Stretch images to cope with high dynamic range: if vb: print("HumVI: Stretch parameters Q,alpha:", Q, alpha) print( "HumVI: At low surface brightness levels, the channel images are further rescaled by alpha" ) print( "HumVI: Nonlinearity sets in at about 1/Q*alpha in the scaled intensity image:", 1.0 / (Q * alpha), ) # Compute total intensity image and the arcsinh of it: I = humvi.lupton_intensity(red.image, green.image, blue.image, type="sum") stretch = humvi.lupton_stretch(I, Q, alpha) # Apply stretch to channel images: r = stretch * red.image g = stretch * green.image b = stretch * blue.image if masklevel is not None: # Mask problem areas - exact zeros or very negative patches should # be set to zero. # BUG: this should have been done after scaling but before conversion # to channels, as its the individual images that have problems... r, g, b = humvi.pjm_mask(r, g, b, masklevel) # Offset the stretched images to make zero level appear dark gray. # Negative offset makes background more black... r, g, b = humvi.pjm_offset(r, g, b, offset) if saturation == "color": # Saturate to colour at some level - might as well be 1, since # Q redefines scale?: threshold = 1.0 r, g, b = humvi.lupton_saturate(r, g, b, threshold) # Otherwise, saturate to white. # Package into a python Image, and write out to file: image = humvi.pack_up(r, g, b) # image.save(outfile) if vb: print("HumVI: Image saved to:", outfile) return image
print compose.__doc__ return # Parse nonlinearity parameters: Qs,alphas = pars.split(',') Q = float(Qs) alpha = float(alphas) # Parse channel colour scales: x,y,z = scales.split(',') rscale,gscale,bscale = float(x),float(y),float(z) # ------------------------------------------------------------------- # Read in images, calibrated into flux units: band3 = humvi.channel(rfile) band2 = humvi.channel(gfile) band1 = humvi.channel(bfile) # Check shapes are equal: humvi.check_image_shapes(band1.image,band2.image,band3.image) # Subtract backgrounds (median, optional): if backsub: band1.subtract_background() band2.subtract_background() band3.subtract_background() # ------------------------------------------------------------------- # BUG: as it stands, this code assumes one file one channel, whereas
def compose(rfile, gfile, bfile, scales=(1.0,1.0,1.0), Q=1.0, alpha=1.0, \ masklevel=None, saturation='color', offset=0.0, backsub=False, \ vb=False, outfile='color.png'): """ Compose RGB color image. """ # ------------------------------------------------------------------- if vb: print "HumVI: Making color composite image of data in following files:",rfile,gfile,bfile print "HumVI: Output will be written to",outfile if masklevel is not None: print "HumVI: Masking stretched pixel values less than",masklevel # Read in images, calibrated into flux units: band3 = humvi.channel(rfile) band2 = humvi.channel(gfile) band1 = humvi.channel(bfile) # Check shapes are equal: humvi.check_image_shapes(band1.image,band2.image,band3.image) # Subtract backgrounds (median, optional): if backsub: band1.subtract_background() band2.subtract_background() band3.subtract_background() # ------------------------------------------------------------------- # BUG: as it stands, this code assumes one file one channel, whereas # in practice we might like to be able to make composites based on # N bands. Need to overload + operator for channels? Calib etc will # need altering as well as image. red = band3 green = band2 blue = band1 # ------------------------------------------------------------------- # Set scales determining color balance in composite: rscale,gscale,bscale = humvi.normalize_scales(scales) red.set_scale(manually=rscale) green.set_scale(manually=gscale) blue.set_scale(manually=bscale) if vb: print 'HumVI: Scales normalized to:',red.scale,green.scale,blue.scale # Scale images - only do once: red.apply_scale() green.apply_scale() blue.apply_scale() # - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - # Stretch images to cope with high dynamic range: if vb: print "HumVI: Stretch parameters Q,alpha:",Q,alpha print "HumVI: At low surface brightness levels, the channel images are further rescaled by alpha" print "HumVI: Nonlinearity sets in at about 1/Q*alpha in the scaled intensity image:",1.0/(Q*alpha) # Compute total intensity image and the arcsinh of it: I = humvi.lupton_intensity(red.image,green.image,blue.image,type='sum') stretch = humvi.lupton_stretch(I,Q,alpha) # Apply stretch to channel images: r = stretch * red.image g = stretch * green.image b = stretch * blue.image if masklevel is not None: # Mask problem areas - exact zeros or very negative patches should # be set to zero. # BUG: this should have been done after scaling but before conversion # to channels, as its the individual images that have problems... r,g,b = humvi.pjm_mask(r,g,b,masklevel) # Offset the stretched images to make zero level appear dark gray. # Negative offset makes background more black... r,g,b = humvi.pjm_offset(r,g,b,offset) if saturation == 'color': # Saturate to colour at some level - might as well be 1, since # Q redefines scale?: threshold = 1.0 r,g,b = humvi.lupton_saturate(r,g,b,threshold) # Otherwise, saturate to white. # Package into a python Image, and write out to file: image = humvi.pack_up(r,g,b) image.save(outfile) if vb: print "HumVI: Image saved to:",outfile return
else: print compose.__doc__ return ## Parse nonlinearity parameters: Qs,alphas = pars.split(',') Q = float(Qs) alpha = float(alphas) ## ------------------------------------------------------------------- ## Read in images, set and apply scales etc: # BUG: this code assumes one file one channel, whereas we would like # to be able to make composites based on N bands. red = humvi.channel(rfile) green = humvi.channel(gfile) blue = humvi.channel(bfile) ## Check shapes are equal: humvi.check_image_shapes(red.image,green.image,blue.image) # Subtract backgrounds (median, optional): if backsub: red.subtract_background() green.subtract_background() blue.subtract_background() # Set scales: # BUG: each image should be given a scale - need to work with # image stacks, not red, green, blue. rgb can come after conversion to