def ensure_blockchain_databases_identical(base_db_1, base_db_2):
    node_1 = MainnetChain(base_db_1, GENESIS_PRIVATE_KEY.public_key.to_canonical_address(), GENESIS_PRIVATE_KEY)
    node_2 = MainnetChain(base_db_2, GENESIS_PRIVATE_KEY.public_key.to_canonical_address(), GENESIS_PRIVATE_KEY)

    # Get all of the addresses of every chain
    next_head_hashes = node_1.chain_head_db.get_head_block_hashes_list()

    wallet_addresses = []
    for next_head_hash in next_head_hashes:
        chain_address = node_1.chaindb.get_chain_wallet_address_for_block_hash(next_head_hash)
        wallet_addresses.append(chain_address)

    next_head_hashes_node_2 = node_2.chain_head_db.get_head_block_hashes_list()

    # This gaurantees both have all the same chains
    assert (next_head_hashes == next_head_hashes_node_2)

    for wallet_address in wallet_addresses:

        # Compare all properties of each account with the hashes
        node_1_account_hash = node_1.get_vm().state.account_db.get_account_hash(wallet_address)
        node_2_account_hash = node_2.get_vm().state.account_db.get_account_hash(wallet_address)
        assert (node_1_account_hash == node_2_account_hash)

        # Compare all chains in database
        node_1_chain = node_1.get_all_blocks_on_chain(wallet_address)
        node_2_chain = node_2.get_all_blocks_on_chain(wallet_address)
        assert (node_1_chain == node_2_chain)

        # Compare the blocks at a deeper level
        for i in range(len(node_1_chain)):
            assert (node_1_chain[i].hash == node_2_chain[i].hash)
            assert_var_1 = node_1.chaindb.get_all_descendant_block_hashes(node_1_chain[i].hash)
            assert_var_2 = node_2.chaindb.get_all_descendant_block_hashes(node_2_chain[i].hash)
            assert ( assert_var_1==assert_var_2 )
Beispiel #2
0
def create_mainnet_genesis_transactions(base_db):
    import sys
    sys.path.append('/d:/Google Drive/forex/blockchain_coding/Helios/prototype desktop/helios_deploy/')
    from deploy_params import (
        genesis_private_key,
        airdrop_private_key,
        bounties_private_key,
        exchange_listings_private_key,
        dapp_incubator_private_key,
        bootnode_1_private_key,
        bootnode_2_private_key,
        masternode_1_private_key,
    )

    chain = MainnetChain(base_db, TESTNET_GENESIS_PRIVATE_KEY.public_key.to_canonical_address(), TESTNET_GENESIS_PRIVATE_KEY)

    genesis_block_timestamp = chain.genesis_block_timestamp
    min_time_between_blocks = chain.get_vm(timestamp=genesis_block_timestamp).min_time_between_blocks
    time_between_head_hash_save = TIME_BETWEEN_HEAD_HASH_SAVE
    
    start_time = genesis_block_timestamp + time_between_head_hash_save
    tx_list = []
    
    # main accounts
    tx_list.append([genesis_private_key, airdrop_private_key, to_wei(110000000, 'ether'), start_time + min_time_between_blocks])
    tx_list.append([genesis_private_key, dapp_incubator_private_key, to_wei(70000000, 'ether'), start_time + min_time_between_blocks*2])
    tx_list.append([genesis_private_key, bounties_private_key, to_wei(50000000, 'ether'), start_time + min_time_between_blocks*3])
    tx_list.append([genesis_private_key, exchange_listings_private_key, to_wei(40000000, 'ether'), start_time + min_time_between_blocks*4])

    # stake for bootnodes (this is large for now to prevent 51% attacks until the network has grown to a sufficiently stable size)
    tx_list.append([airdrop_private_key, bootnode_1_private_key, to_wei(10000000, 'ether'), start_time + min_time_between_blocks*6])
    tx_list.append([airdrop_private_key, bootnode_2_private_key, to_wei(10000000, 'ether'), start_time + min_time_between_blocks*7])
    tx_list.append([airdrop_private_key, masternode_1_private_key, to_wei(10000000, 'ether'), start_time + min_time_between_blocks*8])

    add_transactions_to_blockchain_db(base_db, tx_list)
def create_reward_test_blockchain_database():
    testdb = MemoryDB()

    chain = MainnetChain(testdb, GENESIS_PRIVATE_KEY.public_key.to_canonical_address(), GENESIS_PRIVATE_KEY)
    coin_mature_time = chain.get_vm(timestamp=Timestamp(int(time.time()))).consensus_db.coin_mature_time_for_staking
    min_time_between_blocks = chain.get_vm(timestamp=Timestamp(int(time.time()))).min_time_between_blocks
    required_stake_for_reward_type_2_proof = chain.get_consensus_db(timestamp=Timestamp(int(time.time()))).required_stake_for_reward_type_2_proof


    now = int(time.time())
    start = now - max((coin_mature_time * 2), (min_time_between_blocks * 20))
    key_balance_dict = {}
    for i in range(10):
        key_balance_dict[private_keys[i]] = (
        required_stake_for_reward_type_2_proof, start + min_time_between_blocks * i)

    create_dev_fixed_blockchain_database(testdb, key_balance_dict)
    return testdb
def test_invalid_proofs_timestamp_in_past():

    testdb = create_reward_test_blockchain_database()

    chain = MainnetChain(testdb, private_keys[0].public_key.to_canonical_address(), private_keys[0])
    min_time_between_blocks = chain.get_vm(timestamp=Timestamp(int(time.time()))).min_time_between_blocks
    tx_list = [[private_keys[1], private_keys[0], to_wei(1, 'ether'), int(int(time.time())-min_time_between_blocks*10)]]

    add_transactions_to_blockchain_db(testdb, tx_list)

    chain = MainnetChain(testdb, private_keys[0].public_key.to_canonical_address(), private_keys[0])

    required_number_of_proofs_for_reward_type_2_proof = chain.get_consensus_db(timestamp=Timestamp(int(time.time()))).required_number_of_proofs_for_reward_type_2_proof

    node_staking_scores = []

    # First score/proof with timestamp far in future
    current_private_key = private_keys[1]
    node_staking_score = NodeStakingScore(
        recipient_node_wallet_address=private_keys[0].public_key.to_canonical_address(),
        score=int(1000000),
        since_block_number=0,
        timestamp=int(time.time())-60*10,
        head_hash_of_sender_chain=chain.chaindb.get_canonical_head_hash(
            current_private_key.public_key.to_canonical_address()),
        v=0,
        r=0,
        s=0,
    )
    signed_node_staking_score = node_staking_score.get_signed(current_private_key, MAINNET_NETWORK_ID)
    node_staking_scores.append(signed_node_staking_score)

    score = 100000
    for i in range(2, 10):
        # Second score/proof is from instance 1
        current_private_key = private_keys[i]
        node_staking_score = NodeStakingScore(
            recipient_node_wallet_address=private_keys[0].public_key.to_canonical_address(),
            score=int(score-i),
            since_block_number=1,
            timestamp=int(time.time()),
            head_hash_of_sender_chain=chain.chaindb.get_canonical_head_hash(
                current_private_key.public_key.to_canonical_address()),
            v=0,
            r=0,
            s=0,
            )
        signed_node_staking_score = node_staking_score.get_signed(current_private_key, MAINNET_NETWORK_ID)
        node_staking_scores.append(signed_node_staking_score)

    # Now we try to import the reward block with instance 0
    reward_chain = MainnetChain(testdb, private_keys[0].public_key.to_canonical_address(), private_keys[0])

    with pytest.raises(ValidationError):
        reward_chain.import_current_queue_block_with_reward(node_staking_scores)
def test_invalid_proofs_no_proofs():

    testdb = create_reward_test_blockchain_database()

    chain = MainnetChain(testdb, private_keys[0].public_key.to_canonical_address(), private_keys[0])
    min_time_between_blocks = chain.get_vm(timestamp=Timestamp(int(time.time()))).min_time_between_blocks
    tx_list = [[private_keys[1], private_keys[0], to_wei(1, 'ether'), int(int(time.time())-min_time_between_blocks*10)]]

    add_transactions_to_blockchain_db(testdb, tx_list)

    chain = MainnetChain(testdb, private_keys[0].public_key.to_canonical_address(), private_keys[0])

    required_number_of_proofs_for_reward_type_2_proof = chain.get_consensus_db(timestamp=Timestamp(int(time.time()))).required_number_of_proofs_for_reward_type_2_proof


    # Now we try to import the reward block with instance 0
    reward_chain = MainnetChain(testdb, private_keys[0].public_key.to_canonical_address(), private_keys[0])

    with pytest.raises(RewardAmountRoundsToZero):
        imported_block = reward_chain.import_current_queue_block_with_reward([])
def create_valid_block_at_timestamp(base_db, private_key, transactions = None, receive_transactions = None, reward_bundle = None, timestamp = None):
    '''
    Tries to create a valid block based in the invalid block. The transactions and reward bundle must already be valid
    :param base_db:
    :param private_key:
    :param invalid_block:
    :return:
    '''
    if timestamp == None:
        timestamp = int(time.time())

    chain = MainnetChain(JournalDB(base_db), private_key.public_key.to_canonical_address(), private_key)

    queue_block = chain.get_queue_block()
    queue_block = queue_block.copy(header = queue_block.header.copy(timestamp = timestamp),
                                   transactions=transactions,
                                   receive_transactions=receive_transactions,
                                   reward_bundle=reward_bundle)


    valid_block = chain.get_vm(timestamp = timestamp).import_block(queue_block, validate = False, private_key = chain.private_key)


    return valid_block
def test_invalid_proofs_not_enough_stake():
    testdb = MemoryDB()

    chain = MainnetChain(testdb, GENESIS_PRIVATE_KEY.public_key.to_canonical_address(), GENESIS_PRIVATE_KEY)
    coin_mature_time = chain.get_vm(timestamp=Timestamp(int(time.time()))).consensus_db.coin_mature_time_for_staking
    min_time_between_blocks = chain.get_vm(timestamp=Timestamp(int(time.time()))).min_time_between_blocks
    now = int(time.time())
    start = now - max((coin_mature_time * 2), (min_time_between_blocks * 20))
    key_balance_dict = {
        private_keys[0]: (to_wei(1, 'ether'), start),
        private_keys[1]: (to_wei(1, 'ether'), start + min_time_between_blocks * 1),
        private_keys[2]: (to_wei(1, 'ether'), start + min_time_between_blocks * 2),
        private_keys[3]: (to_wei(1, 'ether'), start + min_time_between_blocks * 3),
        private_keys[4]: (to_wei(1, 'ether'), start + min_time_between_blocks * 4),
        private_keys[5]: (to_wei(1, 'ether'), start + min_time_between_blocks * 5),
        private_keys[6]: (to_wei(1, 'ether'), start + min_time_between_blocks * 6),
        private_keys[7]: (to_wei(1, 'ether'), start + min_time_between_blocks * 7),
        private_keys[8]: (to_wei(1, 'ether'), start + min_time_between_blocks * 8),
        private_keys[9]: (to_wei(1, 'ether'), now - coin_mature_time + 1),  # immature
    }
    create_dev_fixed_blockchain_database(testdb, key_balance_dict)

    chain = MainnetChain(testdb, private_keys[0].public_key.to_canonical_address(), private_keys[0])

    node_staking_scores = []

    # First score/proof with timestamp far in future
    current_private_key = private_keys[1]
    node_staking_score = NodeStakingScore(
        recipient_node_wallet_address=private_keys[0].public_key.to_canonical_address(),
        score=int(1000000),
        since_block_number=0,
        timestamp=int(time.time())-60*10,
        head_hash_of_sender_chain=chain.chaindb.get_canonical_head_hash(
            current_private_key.public_key.to_canonical_address()),
        v=0,
        r=0,
        s=0,
    )
    signed_node_staking_score = node_staking_score.get_signed(current_private_key, MAINNET_NETWORK_ID)
    node_staking_scores.append(signed_node_staking_score)

    score = 100000
    for i in range(2, 10):
        # Second score/proof is from instance 1
        current_private_key = private_keys[i]
        node_staking_score = NodeStakingScore(
            recipient_node_wallet_address=private_keys[0].public_key.to_canonical_address(),
            score=int(score-i),
            since_block_number=1,
            timestamp=int(time.time()),
            head_hash_of_sender_chain=chain.chaindb.get_canonical_head_hash(
                current_private_key.public_key.to_canonical_address()),
            v=0,
            r=0,
            s=0,
            )
        signed_node_staking_score = node_staking_score.get_signed(current_private_key, MAINNET_NETWORK_ID)
        node_staking_scores.append(signed_node_staking_score)

    # Now we try to import the reward block with instance 0
    reward_chain = MainnetChain(testdb, private_keys[0].public_key.to_canonical_address(), private_keys[0])

    with pytest.raises(NotEnoughProofsOrStakeForRewardType2Proof):
        reward_chain.import_current_queue_block_with_reward(node_staking_scores)
def _test_block_rewards_system():
    #The genesis chain will be adding a reward block. We need to generate fake NodeStakingScores from a bunch of other
    #nodes

    # testdb = LevelDB('/home/tommy/.local/share/helios/instance_test/mainnet/chain/full/')
    # testdb = JournalDB(testdb)
    testdb = create_reward_test_blockchain_database()

    chain = MainnetChain(testdb, GENESIS_PRIVATE_KEY.public_key.to_canonical_address(), GENESIS_PRIVATE_KEY)
    coin_mature_time = chain.get_vm(timestamp=Timestamp(int(time.time()))).consensus_db.coin_mature_time_for_staking
    min_time_between_blocks = chain.get_vm(timestamp=Timestamp(int(time.time()))).min_time_between_blocks
    # now = int(time.time())
    # start = now - max((coin_mature_time * 2), (min_time_between_blocks*20))
    # key_balance_dict = {
    #     private_keys[0]: (to_wei(10, 'ether'), start),
    #     private_keys[1]: (to_wei(200, 'ether'), start + min_time_between_blocks * 1),
    #     private_keys[2]: (to_wei(340, 'ether'), start + min_time_between_blocks * 2),
    #     private_keys[3]: (to_wei(1000, 'ether'), start + min_time_between_blocks * 3),
    #     private_keys[4]: (to_wei(1400, 'ether'), start + min_time_between_blocks * 4),
    #     private_keys[5]: (to_wei(2400, 'ether'), start + min_time_between_blocks * 5),
    #     private_keys[6]: (to_wei(3000, 'ether'), start + min_time_between_blocks * 6),
    #     private_keys[7]: (to_wei(4000, 'ether'), start + min_time_between_blocks * 7),
    #     private_keys[8]: (to_wei(1000, 'ether'), start + min_time_between_blocks * 8),
    #     private_keys[9]: (to_wei(10000, 'ether'), now-coin_mature_time+1),# immature
    # }
    # create_dev_fixed_blockchain_database(testdb, key_balance_dict)

    chain = MainnetChain(testdb, GENESIS_PRIVATE_KEY.public_key.to_canonical_address(), GENESIS_PRIVATE_KEY)

    # class NodeStakingScore(rlp.Serializable, metaclass=ABCMeta):
    #     fields = [
    #         ('recipient_node_wallet_address', address),
    #         ('score', f_big_endian_int),
    #         ('since_block_number', f_big_endian_int),
    #         ('timestamp', f_big_endian_int),
    #         ('v', big_endian_int),
    #         ('r', big_endian_int),
    #         ('s', big_endian_int),
    #     ]

    node_staking_scores = []

    score = 1000000
    for private_key in private_keys:
        node_staking_score = NodeStakingScore(recipient_node_wallet_address = GENESIS_PRIVATE_KEY.public_key.to_canonical_address(),
                                              score = int(score),
                                              since_block_number = 0,
                                              timestamp = int(time.time()),
                                              head_hash_of_sender_chain = chain.chaindb.get_canonical_head_hash(private_key.public_key.to_canonical_address()),
                                              v = 0,
                                              r = 0,
                                              s = 0,
                                              )
        signed_node_staking_score = node_staking_score.get_signed(private_key,MAINNET_NETWORK_ID)
        node_staking_scores.append(signed_node_staking_score)
        score = score/5

    chain = MainnetChain(testdb, GENESIS_PRIVATE_KEY.public_key.to_canonical_address(), GENESIS_PRIVATE_KEY)

    node_staking_scores.sort(key=lambda x: -1* x.score)
    for node_staking_score in node_staking_scores:
        node_staking_score.validate()
        print(node_staking_score.is_signature_valid)
        print(node_staking_score.sender)
        print(node_staking_score.score, chain.get_mature_stake(node_staking_score.sender, node_staking_score.timestamp))


    reward_bundle = chain.get_consensus_db().create_reward_bundle_for_block(GENESIS_PRIVATE_KEY.public_key.to_canonical_address(), node_staking_scores, at_timestamp = int(time.time()))


    chain.get_consensus_db().validate_reward_bundle(reward_bundle, GENESIS_PRIVATE_KEY.public_key.to_canonical_address(), int(time.time()))

    print('AAAAAAAAAAA')
    print(reward_bundle.reward_type_1.amount)
    print(reward_bundle.reward_type_2.amount)
    print(reward_bundle.reward_type_2.proof[0].score)


    initial_balance = chain.get_vm().state.account_db.get_balance(GENESIS_PRIVATE_KEY.public_key.to_canonical_address())
    print("balance before reward = ", initial_balance)

    chain.import_current_queue_block_with_reward(reward_bundle.reward_type_2.proof)

    final_balance = chain.get_vm().state.account_db.get_balance(GENESIS_PRIVATE_KEY.public_key.to_canonical_address())
    print("balance after reward = ",final_balance)
    assert((reward_bundle.reward_type_1.amount + reward_bundle.reward_type_2.amount) == (final_balance- initial_balance))

    print("waiting {} seconds before importing the next block".format(min_time_between_blocks))
    time.sleep(min_time_between_blocks)

    proof_chain = MainnetChain(testdb, private_keys[1].public_key.to_canonical_address(), private_keys[1])
    mature_stake = proof_chain.get_mature_stake()
    print("proof chain mature stake")
    print(mature_stake)

    staking_score = proof_chain.get_signed_peer_score_string_private_key(private_keys[1].to_bytes(), private_keys[0].public_key.to_canonical_address())
    staking_score = staking_score.copy(score=1532)
    staking_score = staking_score.get_signed(private_keys[1], proof_chain.network_id)
    print('staking score')
    print(staking_score.score)

    # fields = [
    #     ('recipient_node_wallet_address', address),
    #     ('score', f_big_endian_int),  # a score out of 1,000,000
    #     ('since_block_number', f_big_endian_int),
    #     ('timestamp', f_big_endian_int),
    #     ('head_hash_of_sender_chain', hash32),
    #     ('v', big_endian_int),
    #     ('r', big_endian_int),
    #     ('s', big_endian_int),
    # ]
    #
    reward_chain = MainnetChain(testdb, private_keys[0].public_key.to_canonical_address(), private_keys[0])
    reward_bundle = reward_chain.get_consensus_db().create_reward_bundle_for_block(private_keys[0].public_key.to_canonical_address(), [staking_score],at_timestamp=Timestamp(int(time.time())))
    print("reward type 2 amount")
    print(reward_bundle.reward_type_2.amount)
    print("reward type 2 proof")
    print(reward_bundle.reward_type_2.proof)
    reward_chain.import_current_queue_block_with_reward([staking_score])

    # todo: this will fail if the reward block time is too long. Need to manually set it to a small number for the test... or manually make the blocks older?
    print("waiting {} seconds before importing the next block".format(min_time_between_blocks))
    time.sleep(min_time_between_blocks)

    proof_chain = MainnetChain(testdb, private_keys[1].public_key.to_canonical_address(), private_keys[1])
    mature_stake = proof_chain.get_mature_stake()
    print("proof chain mature stake")
    print(mature_stake)

    staking_score = proof_chain.get_signed_peer_score_string_private_key(private_keys[1].to_bytes(), private_keys[
        0].public_key.to_canonical_address())
    staking_score = staking_score.copy(score=1000000)
    staking_score = staking_score.get_signed(private_keys[1], proof_chain.network_id)
    print('staking score')
    print(staking_score.score)

    # fields = [
    #     ('recipient_node_wallet_address', address),
    #     ('score', f_big_endian_int),  # a score out of 1,000,000
    #     ('since_block_number', f_big_endian_int),
    #     ('timestamp', f_big_endian_int),
    #     ('head_hash_of_sender_chain', hash32),
    #     ('v', big_endian_int),
    #     ('r', big_endian_int),
    #     ('s', big_endian_int),
    # ]
    #
    reward_chain = MainnetChain(testdb, private_keys[0].public_key.to_canonical_address(), private_keys[0])
    reward_bundle = reward_chain.get_consensus_db().create_reward_bundle_for_block(
        private_keys[0].public_key.to_canonical_address(), [staking_score], at_timestamp=Timestamp(int(time.time())))
    print("reward type 2 amount")
    print(reward_bundle.reward_type_2.amount)
    print("reward type 2 proof")
    print(reward_bundle.reward_type_2.proof)
    reward_chain.import_current_queue_block_with_reward([staking_score])
def test_boson_vm_calculate_reward_based_on_fractional_interest():
    testdb = MemoryDB()

    masternode_level_3_required_balance = MASTERNODE_LEVEL_3_REQUIRED_BALANCE
    masternode_level_3_multiplier = MASTERNODE_LEVEL_3_REWARD_TYPE_2_MULTIPLIER
    masternode_level_2_required_balance = MASTERNODE_LEVEL_2_REQUIRED_BALANCE
    masternode_level_2_multiplier = MASTERNODE_LEVEL_2_REWARD_TYPE_2_MULTIPLIER
    masternode_level_1_required_balance = MASTERNODE_LEVEL_1_REQUIRED_BALANCE
    masternode_level_1_multiplier = MASTERNODE_LEVEL_1_REWARD_TYPE_2_MULTIPLIER

    genesis_block_time = int(time.time()) - 10000000
    genesis_params, genesis_state = create_new_genesis_params_and_state(
        GENESIS_PRIVATE_KEY, masternode_level_3_required_balance * 2,
        genesis_block_time)

    time_between_blocks = max(MIN_TIME_BETWEEN_BLOCKS, 1)
    # import genesis block
    MainnetChain.from_genesis(
        testdb, GENESIS_PRIVATE_KEY.public_key.to_canonical_address(),
        genesis_params, genesis_state)

    stake_start = genesis_block_time + time_between_blocks
    tx_list = [[
        GENESIS_PRIVATE_KEY, RECEIVER, masternode_level_3_required_balance,
        stake_start
    ],
               [
                   RECEIVER, RECEIVER2,
                   (masternode_level_3_required_balance -
                    masternode_level_2_required_balance - GAS_TX),
                   stake_start + 100000
               ],
               [
                   RECEIVER, RECEIVER2,
                   (masternode_level_2_required_balance -
                    masternode_level_1_required_balance - GAS_TX),
                   stake_start + 200000
               ],
               [
                   RECEIVER, RECEIVER2,
                   (masternode_level_1_required_balance - 1000000 - GAS_TX),
                   stake_start + 300000
               ]]

    add_transactions_to_blockchain_db(testdb, tx_list)

    receiver_chain = MainnetChain(testdb,
                                  RECEIVER.public_key.to_canonical_address(),
                                  RECEIVER)

    fractional_interest = REWARD_TYPE_2_AMOUNT_FACTOR

    boson_fork_timestamp = 0
    for timestamp_vm_config in MainnetChain.vm_configuration:
        if timestamp_vm_config[1].fork == 'boson':
            boson_fork_timestamp = timestamp_vm_config[0]

    boson_vm = receiver_chain.get_vm(timestamp=boson_fork_timestamp)

    consensus_db = boson_vm.consensus_db

    calculate_at_timestamp = int(time.time())
    reward = consensus_db.calculate_reward_based_on_fractional_interest(
        RECEIVER.public_key.to_canonical_address(), fractional_interest,
        calculate_at_timestamp)

    if calculate_at_timestamp < EARLY_BIRD_BONUS_CUTOFF_TIMESTAMP:
        early_bird_bonus = EARLY_BIRD_BONUS_FACTOR
    else:
        early_bird_bonus = 1
    expected_reward_part_1 = fractional_interest * early_bird_bonus * (
        masternode_level_3_required_balance * 100000 *
        masternode_level_3_multiplier)
    expected_reward_part_2 = fractional_interest * early_bird_bonus * (
        masternode_level_2_required_balance * 100000 *
        masternode_level_2_multiplier)
    expected_reward_part_3 = fractional_interest * early_bird_bonus * (
        masternode_level_1_required_balance * 100000 *
        masternode_level_1_multiplier)
    expected_reward_part_4 = fractional_interest * early_bird_bonus * (
        1000000) * (calculate_at_timestamp - (stake_start + 300000) -
                    consensus_db.coin_mature_time_for_staking)

    # print("Expected calculation = {} * {} * {} * {}".format((calculate_at_timestamp-(stake_start+300000)-COIN_MATURE_TIME_FOR_STAKING), 1000000, fractional_interest, 1))
    # print("Expected calculation = {} * {} * {} * {}".format(100000, masternode_level_1_required_balance, fractional_interest, masternode_level_1_multiplier))
    # print("Expected calculation = {} * {} * {} * {}".format(100000, masternode_level_2_required_balance, fractional_interest, masternode_level_2_multiplier))
    # print("Expected calculation = {} * {} * {} * {}".format(100000, masternode_level_3_required_balance, fractional_interest, masternode_level_3_multiplier))
    #
    # print("Expected reward {}".format(int(expected_reward_part_4)))
    # print("Expected reward {}".format(int(expected_reward_part_4)+int(expected_reward_part_3)))
    # print("Expected reward {}".format(int(expected_reward_part_4)+int(expected_reward_part_3)+int(expected_reward_part_2)))
    # print("Expected reward {}".format(int(expected_reward_part_4)+int(expected_reward_part_3)+int(expected_reward_part_2)+int(expected_reward_part_1)))

    expected_reward = int(expected_reward_part_1) + int(
        expected_reward_part_2) + int(expected_reward_part_3) + int(
            expected_reward_part_4)
    assert (reward == expected_reward)
def create_dev_test_random_blockchain_db_with_reward_blocks(base_db = None, num_iterations = 5):
    # initialize db
    if base_db == None:
        base_db = MemoryDB()


    create_dev_test_random_blockchain_database(base_db, timestamp = 'genesis')

    node_1 = MainnetChain(base_db, GENESIS_PRIVATE_KEY.public_key.to_canonical_address(), GENESIS_PRIVATE_KEY)

    MIN_TIME_BETWEEN_BLOCKS = node_1.get_vm(timestamp = Timestamp(int(time.time()))).min_time_between_blocks
    chain_head_hashes = node_1.chain_head_db.get_head_block_hashes_list()

    last_block_timestamp = 0
    for head_hash in chain_head_hashes:
        header = node_1.chaindb.get_block_header_by_hash(head_hash)
        if header.timestamp > last_block_timestamp:
            last_block_timestamp = header.timestamp

    private_keys_dict = {}
    for random_private_key in random_private_keys:
        priv_key = keys.PrivateKey(random_private_key)
        private_keys_dict[priv_key.public_key.to_address()] = priv_key

    private_keys_dict[GENESIS_PRIVATE_KEY.public_key.to_address()] = GENESIS_PRIVATE_KEY

    for i in range(num_iterations):

        # random_int = random.randint(0,len(private_keys_dict)-1)
        # numbers = [x in range(0, len(private_keys_dict)-1) if x != random_int]
        # random_int = random.choice(numbers)

        if i == 0:
            numbers = [x for x in range(0, len(private_keys_dict) - 1)]
            random_int = random.choice(numbers)
            privkey = GENESIS_PRIVATE_KEY
            receiver_privkey = private_keys_dict[list(private_keys_dict.keys())[random_int]]
        else:
            numbers = [x for x in range(0, len(private_keys_dict) - 1) if x != random_int]
            random_int = random.choice(numbers)
            privkey = receiver_privkey
            receiver_privkey = private_keys_dict[list(private_keys_dict.keys())[random_int]]


        tx_timestamp = last_block_timestamp + MIN_TIME_BETWEEN_BLOCKS+2
        tx_list = [[privkey, receiver_privkey, 10000000*10**18-i*100000*10**18-random.randint(0,1000), tx_timestamp]]


        add_transactions_to_blockchain_db(base_db, tx_list)

        node_1 = MainnetChain(base_db, privkey.public_key.to_canonical_address(), privkey)


        chain_head_hashes = node_1.chain_head_db.get_head_block_hashes_list()

        reward_block_time = tx_timestamp + node_1.get_vm(timestamp = tx_timestamp).consensus_db.min_time_between_reward_blocks+ MIN_TIME_BETWEEN_BLOCKS+2+node_1.get_vm(timestamp = tx_timestamp).consensus_db.coin_mature_time_for_staking

        # print('BBBBBBB')
        # print(node_1.get_vm(timestamp=tx_timestamp).state.account_db.get_balance(receiver_privkey.public_key.to_canonical_address()))
        # print(node_1.chaindb.get_mature_stake(receiver_privkey.public_key.to_canonical_address(), node_1.get_consensus_db(timestamp=tx_timestamp).coin_mature_time_for_staking, reward_block_time))

        node_staking_scores = []
        for head_hash in chain_head_hashes:
            address = node_1.chaindb.get_chain_wallet_address_for_block_hash(head_hash)
            if not (address == privkey.public_key.to_canonical_address()):
                after_block_number = node_1.chaindb.get_latest_reward_block_number(privkey.public_key.to_canonical_address())

                node_staking_score = NodeStakingScore(privkey.public_key.to_canonical_address(),
                                                      1,
                                                      after_block_number,
                                                      reward_block_time,
                                                      head_hash,
                                                      v=0,
                                                      r=0,
                                                      s=0)

                signed_node_staking_score = node_staking_score.get_signed(private_keys_dict[encode_hex(address)], node_1.network_id)

                node_staking_scores.append(signed_node_staking_score)

        if len(node_staking_scores) >= node_1.get_consensus_db(timestamp = tx_timestamp).required_number_of_proofs_for_reward_type_2_proof:
            # print('AAAAAAAAAAAA')
            # print(len(node_staking_scores))
            # print(node_1.get_consensus_db(timestamp = tx_timestamp).required_number_of_proofs_for_reward_type_2_proof)
            reward_bundle = node_1.get_consensus_db(timestamp=tx_timestamp).create_reward_bundle_for_block(privkey.public_key.to_canonical_address(),
                                                                   node_staking_scores,
                                                                   reward_block_time)


            valid_block = create_valid_block_at_timestamp(base_db, privkey, reward_bundle = reward_bundle, timestamp = reward_block_time)

            assert(valid_block.header.timestamp == reward_block_time)
            node_1.import_block(valid_block)

        last_block_timestamp = reward_block_time


    return base_db
def test_get_receipts():
    testdb2 = MemoryDB()

    MainnetChain.from_genesis(
        testdb2, GENESIS_PRIVATE_KEY.public_key.to_canonical_address(),
        MAINNET_GENESIS_PARAMS, MAINNET_GENESIS_STATE)
    """
    Create some receive transactions for RECEIVER
    """
    sender_chain = MainnetChain(testdb2,
                                SENDER.public_key.to_canonical_address(),
                                SENDER)

    min_time_between_blocks = sender_chain.get_vm(
        timestamp=Timestamp(int(time.time()))).min_time_between_blocks
    for i in range(6):
        sender_chain.create_and_sign_transaction_for_queue_block(
            gas_price=i + 1,
            gas=0x0c3500,
            to=RECEIVER.public_key.to_canonical_address(),
            value=i + 100000000000,
            data=b"",
            v=0,
            r=0,
            s=0)

    sender_chain.import_current_queue_block()
    receiver_chain = MainnetChain(testdb2,
                                  RECEIVER.public_key.to_canonical_address(),
                                  RECEIVER)
    receiver_chain.populate_queue_block_with_receive_tx()
    imported_block_1 = receiver_chain.import_current_queue_block()
    """
    Create some send transactions for RECEIVER
    """
    receiver_chain = MainnetChain(testdb2,
                                  RECEIVER.public_key.to_canonical_address(),
                                  RECEIVER)
    for i in range(6):
        receiver_chain.create_and_sign_transaction_for_queue_block(
            gas_price=i + 1,
            gas=0x0c3500,
            to=SENDER.public_key.to_canonical_address(),
            value=i,
            data=b"",
            v=0,
            r=0,
            s=0)
    """
    Create a transaction with data in it.
    """
    compiled_sol = load_compiled_sol_dict('contract_data/erc20_compiled.pkl')

    contract_interface = compiled_sol['contract_data/erc20.sol:SimpleToken']

    w3 = Web3()

    SimpleToken = w3.eth.contract(abi=contract_interface['abi'],
                                  bytecode=contract_interface['bin'])

    # Build transaction to deploy the contract
    w3_tx1 = SimpleToken.constructor().buildTransaction(W3_TX_DEFAULTS)

    from hvm.constants import CREATE_CONTRACT_ADDRESS

    receiver_chain.create_and_sign_transaction_for_queue_block(
        gas_price=0x01,
        gas=1375666,
        to=CREATE_CONTRACT_ADDRESS,
        value=0,
        data=decode_hex(w3_tx1['data']),
        v=0,
        r=0,
        s=0)

    receiver_chain.populate_queue_block_with_receive_tx()

    print("waiting {} seconds before importing next block".format(
        min_time_between_blocks))
    time.sleep(min_time_between_blocks)
    imported_block = receiver_chain.import_current_queue_block()

    for i in range(7):
        if i < 6:
            receipt = sender_chain.chaindb.get_transaction_receipt(
                imported_block.transactions[i].hash)
            assert (receipt.status_code == b'\x01')
            assert (receipt.gas_used == GAS_TX)
            assert (receipt.bloom == 0)
            assert (receipt.logs == ())
        if i == 6:
            receipt = sender_chain.chaindb.get_transaction_receipt(
                imported_block.transactions[i].hash)
            assert (receipt.status_code == b'\x01')
            assert (receipt.gas_used == 1375666)
            assert (
                receipt.bloom ==
                243379359099696592952569079439667912256345493617967967903663341910531480774353059570732838085077727505416158987674861080353852392619637689071728561054211502067278701792094127192831079015338935810676425927305370163403783027301927515372719270157454901551766020292792184739669125690737609931485501648741152187826071626833444578979111366057983284511641401113379885201162016756050289195516614302086913696386892161910800529278878068496138240
            )
            assert (len(receipt.logs) == 1)

    for i in range(6):
        receipt = sender_chain.chaindb.get_transaction_receipt(
            imported_block_1.receive_transactions[i].hash)
        assert (receipt.status_code == b'\x01')
        assert (receipt.gas_used == 0)
        assert (receipt.bloom == 0)
        assert (receipt.logs == ())


# test_get_receipts()
Beispiel #12
0
def _test_airdrop_calling_erc_20():

    # testdb = LevelDB('/home/tommy/.local/share/helios/instance_test/mainnet/chain/full/')
    # testdb = JournalDB(testdb)
    testdb = MemoryDB()
    chain = MainnetChain(testdb,
                         GENESIS_PRIVATE_KEY.public_key.to_canonical_address(),
                         GENESIS_PRIVATE_KEY)
    coin_mature_time = chain.get_vm(timestamp=Timestamp(int(
        time.time()))).consensus_db.coin_mature_time_for_staking

    genesis_params, genesis_state = create_new_genesis_params_and_state(
        GENESIS_PRIVATE_KEY, 1000000 * 10**18,
        int(time.time()) - coin_mature_time * 10000)

    # import genesis block
    chain = MainnetChain.from_genesis(
        testdb, GENESIS_PRIVATE_KEY.public_key.to_canonical_address(),
        genesis_params, genesis_state, GENESIS_PRIVATE_KEY)

    #
    # erc20 contract deploy
    #

    compiled_erc20_sol = load_compiled_sol_dict(
        'contract_data/erc20_compiled.pkl')

    EXPECTED_TOTAL_SUPPLY = 10000000000000000000000

    erc20_contract_interface = compiled_erc20_sol[
        'contract_data/erc20.sol:SimpleToken']

    w3 = Web3()

    SimpleToken = w3.eth.contract(abi=erc20_contract_interface['abi'],
                                  bytecode=erc20_contract_interface['bin'])

    # Build transaction to deploy the contract
    w3_erc20_tx = SimpleToken.constructor().buildTransaction(W3_TX_DEFAULTS)

    max_gas = 20000000

    chain.create_and_sign_transaction_for_queue_block(
        gas_price=0x01,
        gas=max_gas,
        to=CREATE_CONTRACT_ADDRESS,
        value=0,
        data=decode_hex(w3_erc20_tx['data']),
        v=0,
        r=0,
        s=0)

    #time.sleep(1)
    print("deploying erc20 smart contract")
    imported_block = chain.import_current_queue_block()

    #now we need to add the block to the smart contract
    list_of_smart_contracts = chain.get_vm(
    ).state.account_db.get_smart_contracts_with_pending_transactions()
    erc20_contract_address = list_of_smart_contracts[0]

    chain = MainnetChain(testdb, erc20_contract_address, private_keys[0])

    chain.populate_queue_block_with_receive_tx()
    imported_block = chain.import_current_queue_block()

    #
    # airdrop contract deploy
    #
    compiled_airdrop_sol = load_compiled_sol_dict(
        'contract_data/airdrop_compiled.pkl')

    EXPECTED_TOTAL_SUPPLY = 10000000000000000000000

    airdrop_contract_interface = compiled_airdrop_sol[
        'contract_data/airdrop.sol:Airdrop']

    Airdrop = w3.eth.contract(abi=airdrop_contract_interface['abi'],
                              bytecode=airdrop_contract_interface['bin'])

    # Build transaction to deploy the contract
    w3_airdrop_tx = Airdrop.constructor().buildTransaction(W3_TX_DEFAULTS)

    chain = MainnetChain(testdb,
                         GENESIS_PRIVATE_KEY.public_key.to_canonical_address(),
                         GENESIS_PRIVATE_KEY)

    chain.create_and_sign_transaction_for_queue_block(
        gas_price=0x01,
        gas=max_gas,
        to=CREATE_CONTRACT_ADDRESS,
        value=0,
        data=decode_hex(w3_airdrop_tx['data']),
        v=0,
        r=0,
        s=0)

    print("deploying airdrop smart contract")
    imported_block = chain.import_current_queue_block()

    # now we need to add the block to the smart contract
    list_of_smart_contracts = chain.get_vm(
    ).state.account_db.get_smart_contracts_with_pending_transactions()
    airdrop_contract_address = list_of_smart_contracts[0]

    chain = MainnetChain(testdb, airdrop_contract_address, private_keys[0])

    chain.populate_queue_block_with_receive_tx()
    imported_block = chain.import_current_queue_block()

    #
    # Interacting with deployed smart contract step 1) add send transaction
    #
    chain = MainnetChain(testdb,
                         GENESIS_PRIVATE_KEY.public_key.to_canonical_address(),
                         GENESIS_PRIVATE_KEY)

    print(erc20_contract_interface['abi'])
    simple_token = w3.eth.contract(
        address=Web3.toChecksumAddress(erc20_contract_address),
        abi=erc20_contract_interface['abi'],
    )

    airdrop_token_balance = 1000

    w3_erc20_send = simple_token.functions.transfer(
        Web3.toChecksumAddress(airdrop_contract_address),
        airdrop_token_balance).buildTransaction(W3_TX_DEFAULTS)

    chain.create_and_sign_transaction_for_queue_block(
        gas_price=0x01,
        gas=max_gas,
        to=erc20_contract_address,
        value=0,
        data=decode_hex(w3_erc20_send['data']),
        v=0,
        r=0,
        s=0)
    imported_block = chain.import_current_queue_block()

    chain = MainnetChain(testdb, erc20_contract_address, private_keys[0])
    chain.populate_queue_block_with_receive_tx()
    imported_block = chain.import_current_queue_block()

    from pprint import pprint
    receipt = chain.chaindb.get_receipts(imported_block.header, Receipt)[0]

    receipt_dict = format_receipt_for_web3_to_extract_events(
        receipt, imported_block.receive_transactions[0].hash, chain)

    rich_logs = simple_token.events.Transfer().processReceipt(receipt_dict)
    print(rich_logs)
    print(rich_logs[0]['args'])
    print('a')

    assert (to_int(
        chain.chaindb.get_receipts(
            imported_block.header,
            Receipt)[0].logs[0].data) == airdrop_token_balance)

    chain = MainnetChain(testdb,
                         GENESIS_PRIVATE_KEY.public_key.to_canonical_address(),
                         GENESIS_PRIVATE_KEY)

    w3_erc20_balance = simple_token.functions.balanceOf(
        Web3.toChecksumAddress(airdrop_contract_address)).buildTransaction(
            W3_TX_DEFAULTS)

    chain.create_and_sign_transaction_for_queue_block(
        gas_price=0x01,
        gas=max_gas,
        to=erc20_contract_address,
        value=0,
        data=decode_hex(w3_erc20_balance['data']),
        v=0,
        r=0,
        s=0)
    imported_block = chain.import_current_queue_block()

    chain = MainnetChain(testdb, erc20_contract_address, private_keys[0])
    chain.populate_queue_block_with_receive_tx()
    imported_block = chain.import_current_queue_block()

    print(chain.chaindb.get_receipts(imported_block.header, Receipt)[0].logs)

    exit()
    #now lets look at the reciept to see the result
    assert (to_int(
        chain.chaindb.get_receipts(
            imported_block.header,
            Receipt)[0].logs[0].data) == EXPECTED_TOTAL_SUPPLY)
    print("Total supply call gave expected result!")
    gas_used = to_int(
        chain.chaindb.get_receipts(imported_block.header, Receipt)[0].gas_used)

    #
    # Interacting with deployed smart contract step 3) Receiving refund of extra gas that wasn't used in the computation
    #
    initial_balance = chain.get_vm().state.account_db.get_balance(
        GENESIS_PRIVATE_KEY.public_key.to_canonical_address())
    chain = MainnetChain(testdb,
                         GENESIS_PRIVATE_KEY.public_key.to_canonical_address(),
                         GENESIS_PRIVATE_KEY)
    chain.populate_queue_block_with_receive_tx()
    imported_block = chain.import_current_queue_block()
    final_balance = chain.get_vm().state.account_db.get_balance(
        GENESIS_PRIVATE_KEY.public_key.to_canonical_address())
    assert ((final_balance - initial_balance) == (max_gas - gas_used))
    print("Refunded gas is the expected amount.")
Beispiel #13
0
def test_erc_20_smart_contract_deploy_system():

    # testdb = LevelDB('/home/tommy/.local/share/helios/instance_test/mainnet/chain/full/')
    # testdb = JournalDB(testdb)
    testdb = MemoryDB()
    chain = MainnetChain(testdb,
                         GENESIS_PRIVATE_KEY.public_key.to_canonical_address(),
                         GENESIS_PRIVATE_KEY)
    coin_mature_time = chain.get_vm(timestamp=Timestamp(int(
        time.time()))).consensus_db.coin_mature_time_for_staking

    now = int(time.time())
    key_balance_dict = {
        private_keys[0]: (1000000000000, now - coin_mature_time * 10 - 100)
    }
    create_dev_fixed_blockchain_database(testdb, key_balance_dict)

    chain = MainnetChain(testdb,
                         GENESIS_PRIVATE_KEY.public_key.to_canonical_address(),
                         GENESIS_PRIVATE_KEY)

    min_time_between_blocks = chain.get_vm(
        timestamp=Timestamp(int(time.time()))).min_time_between_blocks
    for private_key, balance_time in key_balance_dict.items():
        assert (chain.get_vm().state.account_db.get_balance(
            private_key.public_key.to_canonical_address()) == balance_time[0])

    SOLIDITY_SRC_FILE = 'contract_data/erc20.sol'
    EXPECTED_TOTAL_SUPPLY = 10000000000000000000000

    #compiled_sol = compile_files([SOLIDITY_SRC_FILE])

    compiled_sol = load_compiled_sol_dict('contract_data/erc20_compiled.pkl')

    contract_interface = compiled_sol['{}:SimpleToken'.format(
        SOLIDITY_SRC_FILE)]

    w3 = Web3()

    SimpleToken = w3.eth.contract(abi=contract_interface['abi'],
                                  bytecode=contract_interface['bin'])

    # Build transaction to deploy the contract
    w3_tx1 = SimpleToken.constructor().buildTransaction(W3_TX_DEFAULTS)

    max_gas = 20000000

    chain.create_and_sign_transaction_for_queue_block(
        gas_price=0x01,
        gas=max_gas,
        to=CREATE_CONTRACT_ADDRESS,
        value=0,
        data=decode_hex(w3_tx1['data']),
        v=0,
        r=0,
        s=0)

    #time.sleep(1)
    print("deploying smart contract")

    initial_balance = chain.get_vm().state.account_db.get_balance(
        GENESIS_PRIVATE_KEY.public_key.to_canonical_address())
    imported_block = chain.import_current_queue_block()
    final_balance = chain.get_vm().state.account_db.get_balance(
        GENESIS_PRIVATE_KEY.public_key.to_canonical_address())
    gas_used = to_int(
        chain.chaindb.get_receipts(imported_block.header, Receipt)[0].gas_used)
    assert ((initial_balance - final_balance) == gas_used)

    print(GENESIS_PRIVATE_KEY.public_key.to_canonical_address())
    print(
        generate_contract_address(
            GENESIS_PRIVATE_KEY.public_key.to_canonical_address(),
            imported_block.transactions[0].nonce))
    print(
        chain.chaindb.get_receipts(imported_block.header,
                                   Receipt)[0].logs[0].address)

    #contractAddress

    print("Used the correct amount of gas.")

    #now we need to add the block to the smart contract
    list_of_smart_contracts = chain.get_vm(
    ).state.account_db.get_smart_contracts_with_pending_transactions()
    deployed_contract_address = list_of_smart_contracts[0]
    print(list_of_smart_contracts)

    chain = MainnetChain(testdb, deployed_contract_address, private_keys[0])

    chain.populate_queue_block_with_receive_tx()
    imported_block = chain.import_current_queue_block()

    list_of_smart_contracts = chain.get_vm(
    ).state.account_db.get_smart_contracts_with_pending_transactions()
    print(list_of_smart_contracts)

    #lets make sure it didn't create a refund transaction for the initial sender.
    print(chain.get_vm().state.account_db.has_receivable_transactions(
        GENESIS_PRIVATE_KEY.public_key.to_canonical_address()))

    # print('ASDASD')
    # print(chain.chaindb.get_receipts(imported_block.header, Receipt)[0].logs[0].data)

    #
    # Interacting with deployed smart contract step 1) add send transaction
    #
    chain = MainnetChain(testdb,
                         GENESIS_PRIVATE_KEY.public_key.to_canonical_address(),
                         GENESIS_PRIVATE_KEY)

    simple_token = w3.eth.contract(
        address=Web3.toChecksumAddress(deployed_contract_address),
        abi=contract_interface['abi'],
    )

    w3_tx2 = simple_token.functions.totalSupply().buildTransaction(
        W3_TX_DEFAULTS)

    chain.create_and_sign_transaction_for_queue_block(
        gas_price=0x01,
        gas=max_gas,
        to=deployed_contract_address,
        value=0,
        data=decode_hex(w3_tx2['data']),
        v=0,
        r=0,
        s=0)

    #lets make sure it subtracts the entire max gas
    initial_balance = chain.get_vm().state.account_db.get_balance(
        GENESIS_PRIVATE_KEY.public_key.to_canonical_address())

    print("waiting {} seconds before importing next block".format(
        min_time_between_blocks))
    time.sleep(min_time_between_blocks)
    chain.import_current_queue_block()
    final_balance = chain.get_vm().state.account_db.get_balance(
        GENESIS_PRIVATE_KEY.public_key.to_canonical_address())
    assert ((initial_balance - final_balance) == max_gas)

    #
    # Interacting with deployed smart contract step 2) add receive transaction to smart contract chain
    #

    chain = MainnetChain(testdb, deployed_contract_address, private_keys[0])
    chain.populate_queue_block_with_receive_tx()

    print("waiting {} seconds before importing next block".format(
        min_time_between_blocks))
    time.sleep(min_time_between_blocks)
    imported_block = chain.import_current_queue_block()

    receipt = chain.chaindb.get_receipts(imported_block.header, Receipt)[0]
    receipt_dict = format_receipt_for_web3_to_extract_events(
        receipt, imported_block.receive_transactions[0].hash, chain)

    rich_logs = simple_token.events.Print().processReceipt(receipt_dict)
    print(rich_logs[0]['args'])
    print('a')

    #now lets look at the reciept to see the result
    assert (to_int(
        chain.chaindb.get_receipts(
            imported_block.header,
            Receipt)[0].logs[0].data) == EXPECTED_TOTAL_SUPPLY)
    print("Total supply call gave expected result!")
    gas_used = to_int(
        chain.chaindb.get_receipts(imported_block.header, Receipt)[0].gas_used)

    #
    # Interacting with deployed smart contract step 3) Receiving refund of extra gas that wasn't used in the computation
    #
    initial_balance = chain.get_vm().state.account_db.get_balance(
        GENESIS_PRIVATE_KEY.public_key.to_canonical_address())
    chain = MainnetChain(testdb,
                         GENESIS_PRIVATE_KEY.public_key.to_canonical_address(),
                         GENESIS_PRIVATE_KEY)
    chain.populate_queue_block_with_receive_tx()

    print("waiting {} seconds before importing next block".format(
        min_time_between_blocks))
    time.sleep(min_time_between_blocks)
    imported_block = chain.import_current_queue_block()
    final_balance = chain.get_vm().state.account_db.get_balance(
        GENESIS_PRIVATE_KEY.public_key.to_canonical_address())
    assert ((final_balance - initial_balance) == (max_gas - gas_used))
    print("Refunded gas is the expected amount.")