def SimplifiedQbsolv(max_iter=10, max_time=None, convergence=3, energy_threshold=None, max_subproblem_size=30): """Races a Tabu solver and a QPU-based sampler of flip-energy-impact induced subproblems. For arguments description see: :class:`~hybrid.reference.kerberos.Kerberos`. """ energy_reached = None if energy_threshold is not None: energy_reached = lambda en: en <= energy_threshold workflow = hybrid.Loop(hybrid.Race( hybrid.Identity(), hybrid.InterruptableTabuSampler(), hybrid.EnergyImpactDecomposer( size=max_subproblem_size, rolling=True, rolling_history=0.15) | hybrid.QPUSubproblemAutoEmbeddingSampler() | hybrid.SplatComposer()) | hybrid.ArgMin(), max_iter=max_iter, max_time=max_time, convergence=convergence, terminate=energy_reached) return workflow
# distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import print_function import sys import dimod import hybrid # load a problem problem = sys.argv[1] with open(problem) as fp: bqm = dimod.BinaryQuadraticModel.from_coo(fp) # define the workflow workflow = hybrid.Loop(hybrid.RacingBranches( hybrid.Identity(), hybrid.InterruptableTabuSampler(), hybrid.EnergyImpactDecomposer(size=50, rolling=True, traversal='bfs') | hybrid.QPUSubproblemAutoEmbeddingSampler() | hybrid.SplatComposer()) | hybrid.ArgMin(), convergence=3) # create a dimod sampler that runs the workflow and sample result = hybrid.HybridSampler(workflow).sample(bqm) # show results print("Solution: sample={.first}".format(result))
problem = sys.argv[1] with open(problem) as fp: bqm = dimod.BinaryQuadraticModel.from_coo(fp) # construct a Dialectic Search workflow generate_antithesis = (hybrid.IdentityDecomposer() | hybrid.RandomSubproblemSampler() | hybrid.SplatComposer() | hybrid.TabuProblemSampler()) generate_synthesis = (hybrid.GreedyPathMerge() | hybrid.TabuProblemSampler()) tracker = hybrid.TrackMin() local_update = hybrid.LoopWhileNoImprovement( hybrid.Parallel(hybrid.Identity(), generate_antithesis) | generate_synthesis | tracker, max_tries=10) global_update = hybrid.Loop(generate_antithesis | local_update, max_iter=10) # run the workflow init_state = hybrid.State.from_sample(hybrid.min_sample(bqm), bqm) final_state = global_update.run(init_state).result() # show execution profile hybrid.profiling.print_counters(global_update) # show results print("Solution: sample={.samples.first}".format(tracker.best))
from __future__ import print_function import sys import operator import dimod import hybrid # load a problem problem = sys.argv[1] with open(problem) as fp: bqm = dimod.BinaryQuadraticModel.from_coo(fp) # construct a workflow that races Simulated Annealing against SA/Tabu on a subproblem iteration = hybrid.RacingBranches( hybrid.Identity(), hybrid.SimulatedAnnealingProblemSampler(), hybrid.EnergyImpactDecomposer(size=50) | hybrid.RacingBranches( hybrid.SimulatedAnnealingSubproblemSampler(num_sweeps=1000), hybrid.TabuSubproblemSampler(tenure=20, timeout=10)) | hybrid.ArgMin('subsamples.first.energy') | hybrid.SplatComposer()) | hybrid.ArgMin('samples.first.energy') main = hybrid.Loop(iteration, max_iter=10, convergence=3) # run the workflow init_state = hybrid.State.from_sample(hybrid.utils.min_sample(bqm), bqm) solution = main.run(init_state).result() # show results print(""" Solution:
def Kerberos(max_iter=100, max_time=None, convergence=3, energy_threshold=None, sa_reads=1, sa_sweeps=10000, tabu_timeout=500, qpu_reads=100, qpu_sampler=None, qpu_params=None, max_subproblem_size=50): """An opinionated hybrid asynchronous decomposition sampler for problems of arbitrary structure and size. Runs Tabu search, Simulated annealing and QPU subproblem sampling (for high energy impact problem variables) in parallel and returns the best samples. Kerberos workflow is used by :class:`KerberosSampler`. Termination Criteria Args: max_iter (int): Number of iterations in the hybrid algorithm. max_time (float/None, optional, default=None): Wall clock runtime termination criterion. Unlimited by default. convergence (int): Number of iterations with no improvement that terminates sampling. energy_threshold (float, optional): Terminate when this energy threshold is surpassed. Check is performed at the end of each iteration. Simulated Annealing Parameters: sa_reads (int): Number of reads in the simulated annealing branch. sa_sweeps (int): Number of sweeps in the simulated annealing branch. Tabu Search Parameters: tabu_timeout (int): Timeout for non-interruptable operation of tabu search (time in milliseconds). QPU Sampling Parameters: qpu_reads (int): Number of reads in the QPU branch. qpu_sampler (:class:`dimod.Sampler`, optional, default=DWaveSampler()): Quantum sampler such as a D-Wave system. qpu_params (dict): Dictionary of keyword arguments with values that will be used on every call of the QPU sampler. max_subproblem_size (int): Maximum size of the subproblem selected in the QPU branch. Returns: Workflow (:class:`~hybrid.core.Runnable` instance). """ energy_reached = None if energy_threshold is not None: energy_reached = lambda en: en <= energy_threshold iteration = hybrid.Race( hybrid.Identity(), hybrid.InterruptableTabuSampler(timeout=tabu_timeout), hybrid.InterruptableSimulatedAnnealingProblemSampler( num_reads=sa_reads, num_sweeps=sa_sweeps), hybrid.EnergyImpactDecomposer(size=max_subproblem_size, rolling=True, rolling_history=0.3, traversal='bfs') | hybrid.QPUSubproblemAutoEmbeddingSampler(num_reads=qpu_reads, qpu_sampler=qpu_sampler, qpu_params=qpu_params) | hybrid.SplatComposer()) | hybrid.ArgMin() workflow = hybrid.Loop(iteration, max_iter=max_iter, max_time=max_time, convergence=convergence, terminate=energy_reached) return workflow
a, b = substates return a.updated( subsamples=hybrid.hstack_samplesets(a.subsamples, b.subsamples)) subproblems = hybrid.Unwind( hybrid.EnergyImpactDecomposer(size=50, rolling_history=0.15)) qpu = hybrid.Map(hybrid.QPUSubproblemAutoEmbeddingSampler()) | hybrid.Reduce( hybrid.Lambda(merge_substates)) | hybrid.SplatComposer() random = hybrid.Map(hybrid.RandomSubproblemSampler()) | hybrid.Reduce( hybrid.Lambda(merge_substates)) | hybrid.SplatComposer() subsampler = hybrid.Parallel(qpu, random, endomorphic=False) | hybrid.ArgMin() iteration = hybrid.Race(hybrid.Identity(), hybrid.InterruptableTabuSampler(), subproblems | subsampler) | hybrid.ArgMin() main = hybrid.Loop(iteration, max_iter=10, convergence=3) # run the workflow init_state = hybrid.State.from_sample(hybrid.min_sample(bqm), bqm) solution = main.run(init_state).result() # show execution profile hybrid.profiling.print_counters(main) # show results print("Solution: sample={.samples.first}".format(solution))
import sys import dimod import hybrid # load a problem problem = sys.argv[1] with open(problem) as fp: bqm = dimod.BinaryQuadraticModel.from_coo(fp) # run Tabu in parallel with QPU, but post-process QPU samples with very short Tabu iteration = hybrid.RacingBranches( hybrid.Identity(), hybrid.InterruptableTabuSampler(), hybrid.EnergyImpactDecomposer(size=50) | hybrid.QPUSubproblemAutoEmbeddingSampler(num_reads=100) | hybrid.SplatComposer() | hybrid.TabuProblemSampler(timeout=1) ) | hybrid.ArgMin() main = hybrid.Loop(iteration, max_iter=10, convergence=3) # run the workflow init_state = hybrid.State.from_sample(hybrid.utils.min_sample(bqm), bqm) solution = main.run(init_state).result() # show results
def sample(self, bqm, init_sample=None, max_iter=100, convergence=3, num_reads=1, sa_reads=1, sa_sweeps=10000, tabu_timeout=500, qpu_reads=100, qpu_sampler=None, qpu_params=None, max_subproblem_size=50, energy_threshold=None): """Run Tabu search, Simulated annealing and QPU subproblem sampling (for high energy impact problem variables) in parallel and return the best samples. Args: bqm (:obj:`~dimod.BinaryQuadraticModel`): Binary quadratic model to be sampled from. init_sample (:class:`~dimod.SampleSet`, callable, ``None``): Initial sample set (or sample generator) used for each "read". Use a random sample for each read by default. max_iter (int): Number of iterations in the hybrid algorithm. convergence (int): Number of iterations with no improvement that terminates sampling. num_reads (int): Number of reads. Each sample is the result of a single run of the hybrid algorithm. sa_reads (int): Number of reads in the simulated annealing branch. sa_sweeps (int): Number of sweeps in the simulated annealing branch. tabu_timeout (int): Timeout for non-interruptable operation of tabu search (time in milliseconds). qpu_reads (int): Number of reads in the QPU branch. qpu_sampler (:class:`dimod.Sampler`, optional, default=DWaveSampler()): Quantum sampler such as a D-Wave system. qpu_params (dict): Dictionary of keyword arguments with values that will be used on every call of the QPU sampler. max_subproblem_size (int): Maximum size of the subproblem selected in the QPU branch. energy_threshold (float, optional): Terminate when this energy threshold is surpassed. Check is performed at the end of each iteration. Returns: :obj:`~dimod.SampleSet`: A `dimod` :obj:`.~dimod.SampleSet` object. """ if callable(init_sample): init_state_gen = lambda: hybrid.State.from_sample( init_sample(), bqm) elif init_sample is None: init_state_gen = lambda: hybrid.State.from_sample( hybrid.random_sample(bqm), bqm) elif isinstance(init_sample, dimod.SampleSet): init_state_gen = lambda: hybrid.State.from_sample(init_sample, bqm) else: raise TypeError( "'init_sample' should be a SampleSet or a SampleSet generator") subproblem_size = min(len(bqm), max_subproblem_size) energy_reached = None if energy_threshold is not None: energy_reached = lambda en: en <= energy_threshold iteration = hybrid.Race( hybrid.Identity(), hybrid.InterruptableTabuSampler(timeout=tabu_timeout), hybrid.InterruptableSimulatedAnnealingProblemSampler( num_reads=sa_reads, num_sweeps=sa_sweeps), hybrid.EnergyImpactDecomposer(size=subproblem_size, rolling=True, rolling_history=0.3, traversal='bfs') | hybrid.QPUSubproblemAutoEmbeddingSampler(num_reads=qpu_reads, qpu_sampler=qpu_sampler, qpu_params=qpu_params) | hybrid.SplatComposer(), ) | hybrid.ArgMin() self.runnable = hybrid.Loop(iteration, max_iter=max_iter, convergence=convergence, terminate=energy_reached) samples = [] energies = [] for _ in range(num_reads): init_state = init_state_gen() final_state = self.runnable.run(init_state) # the best sample from each run is one "read" ss = final_state.result().samples ss.change_vartype(bqm.vartype, inplace=True) samples.append(ss.first.sample) energies.append(ss.first.energy) return dimod.SampleSet.from_samples(samples, vartype=bqm.vartype, energy=energies)