Beispiel #1
0
def test_2d_tv_denoise():
    rng = np.random.RandomState(123)
    data = ascent().astype(float)
    data_noisy = data + data.std() * rng.randn(*data.shape)
    data_clean = tv_denoise(data, weight=60)

    norm_noisy = np.linalg.norm(data - data_noisy) / np.linalg.norm(data)
    norm_clean = np.linalg.norm(data - data_clean) / np.linalg.norm(data)

    np.testing.assert_allclose(norm_noisy, 0.48604971)
    np.testing.assert_allclose(norm_clean, 0.10888393)
Beispiel #2
0
def test_3d_tv_denoise():
    rng = np.random.RandomState(123)
    x, y, z = np.ogrid[0:40, 0:40, 0:40]
    data = (x - 22)**2 + (y - 20)**2 + (z - 17)**2 < 8**2
    data = 255 * data.astype(float)
    data_noisy = data + data.std() * rng.randn(*data.shape)
    data_clean = tv_denoise(data_noisy, weight=100)

    norm_noisy = np.linalg.norm(data - data_noisy) / np.linalg.norm(data)
    norm_clean = np.linalg.norm(data - data_clean) / np.linalg.norm(data)

    print(norm_clean)
    np.testing.assert_allclose(norm_noisy, 0.98151071)
    np.testing.assert_allclose(norm_clean, 0.12519535)
Beispiel #3
0
def test_tv_denoise_error():
    with pytest.raises(ValueError, match="may be denoised"):
        _ = tv_denoise(np.array([1, 2, 3]))