Beispiel #1
0
    def test_map_values_std_isset(self, weighted):
        self._post_setup_method(weighted)
        m = self.m
        L = Gaussian(centre=15.)
        L.centre.free = L.sigma.free = False
        m.append(L)

        m.multifit(iterpath="serpentine")
        nonlinear = L.A.map.copy()

        L.A.map['is_set'] = False
        cm = pytest.warns(UserWarning) if weighted and not self.s._lazy else \
            dummy_context_manager()
        with cm:
            m.multifit(optimizer='lstsq', calculate_errors=True)
        linear = L.A.map.copy()

        np.testing.assert_allclose(nonlinear['values'], linear['values'])
        np.testing.assert_allclose(nonlinear['std'], linear['std'])
        np.testing.assert_allclose(nonlinear['is_set'], linear['is_set'])

        cm = pytest.warns(UserWarning) if weighted and not self.s._lazy else \
            dummy_context_manager()
        with cm:
            m.multifit(optimizer='lstsq', calculate_errors=False)
        np.testing.assert_equal(L.A.map['std'], np.nan)
Beispiel #2
0
    def test_offset(self, weighted):
        self._post_setup_method(weighted)
        m = self.m
        L = Offset(offset=1.)
        m.append(L)

        m.fit(optimizer='lstsq')
        single = m.as_signal()
        m.assign_current_values_to_all()
        cm = pytest.warns(UserWarning) if weighted and not self.s._lazy else \
            dummy_context_manager()
        with cm:
            m.multifit(optimizer='lstsq', iterpath='serpentine')
        multi = m.as_signal()
        # compare fits from first pixel
        np.testing.assert_allclose(single(), multi())
Beispiel #3
0
    def test_gaussian(self, weighted):
        self._post_setup_method(weighted)
        m = self.m
        L = Gaussian(centre=15.)
        L.centre.free = L.sigma.free = False
        m.append(L)

        m.fit(optimizer='lstsq')
        single = m.as_signal()
        m.assign_current_values_to_all()
        cm = pytest.warns(UserWarning) if weighted and not self.s._lazy else \
            dummy_context_manager()
        with cm:
            m.multifit(optimizer='lstsq', iterpath='serpentine')
        multi = m.as_signal()

        np.testing.assert_allclose(single(), multi())
Beispiel #4
0
def test_main_header_from_signal(unit, expected_scale_factor, version, fheb,
                                 sig, fake_signals, metadata, fake_metadatas):
    signal = fake_signals[sig]
    if metadata is not None:
        signal._metadata = fake_metadatas[metadata]
    signal.axes_manager[-1].units = unit
    signal.axes_manager[-2].units = unit
    original_scale_x = signal.axes_manager[-2].scale
    if unit == "foo":
        cm = pytest.warns(UserWarning)
    else:
        cm = dummy_context_manager()
    with cm:
        header = _get_main_header_from_signal(signal, version, fheb)
    assert header["size"] == np.dtype(TVIPS_RECORDER_GENERAL_HEADER).itemsize
    assert header["version"] == version
    assert header["dimx"] == signal.axes_manager[-2].size
    assert header["dimy"] == signal.axes_manager[-1].size
    assert header["offsetx"] == 0
    assert header["offsety"] == 0
    assert header["pixelsize"] == original_scale_x * expected_scale_factor
    assert header["frameheaderbytes"] == np.dtype(
        TVIPS_RECORDER_FRAME_HEADER).itemsize + fheb
    if metadata == "diffraction" and unit == "1/pm":
        assert header[
            "magtotal"] == signal.metadata.Acquisition_instrument.TEM.camera_length
    elif metadata == "imaging" and unit == "um":
        assert header[
            "magtotal"] == signal.metadata.Acquisition_instrument.TEM.magnification
    else:
        assert header["magtotal"] == 0
    if metadata is None:
        assert header["ht"] == 0
    else:
        assert header[
            "ht"] == signal.metadata.Acquisition_instrument.TEM.beam_energy