Beispiel #1
0
 def _convert_to_hparams_domain(domain: Domain) -> Dict[str, hp.HParam]:
     hparams = {}
     for var_name, dim in domain.flatten().items():
         dim_type = Domain.get_type(dim)
         joined_name = utils.join_strings(var_name, join_char="/")
         if dim_type == Domain.Continuous:
             hp_dim_type = hp.RealInterval
             vals = list(map(float, dim))
         elif dim_type in [Domain.Discrete, Domain.Categorical]:
             hp_dim_type = hp.Discrete
             vals = (dim, )
         else:
             raise TypeError(f"Cannot map subdomain of type {dim_type} "
                             f"to a known HParams domain.")
         hparams[joined_name] = hp.HParam(joined_name, hp_dim_type(*vals))
     return hparams
Beispiel #2
0
def test_bo_gp_mcmc_model():
    domain = Domain({"x": [-1., 6.]})
    bayes_opt = bo.BayesianOptimization(domain=domain, seed=7)
    test_utils.evaluate_continuous_1d(bayes_opt,
                                      batch_size=1,
                                      n_steps=7,
                                      model="GP_MCMC",
                                      evaluator_type="sequential")
Beispiel #3
0
def generated_history():
    domain = Domain({
        "x": [-5., 6.],
        "y": {"sin", "sqr"},
        "z": set(range(4))
    },
                    seed=7)
    n_samples = 10
    history = [
        HistoryPoint(sample=domain.sample(),
                     metrics={
                         "metric_1": EvaluationScore(float(i)),
                         "metric_2": EvaluationScore(i * 2.)
                     }) for i in range(n_samples)
    ]
    if len(history) == 1:
        history = history[0]
    return history, domain
Beispiel #4
0
def test_from_list():
    lst = [(("a", "b"), {2, 3, 4}), (("c", ), {0, 0.1}),
           (("d", "e", "f"), {0, 1}), (("d", "g"), {2, 3})]
    domain_true = Domain({
        "a": {
            "b": {2, 3, 4}
        },
        "c": {0, 0.1},
        "d": {
            "e": {
                "f": {0, 1}
            },
            "g": {2, 3}
        }
    })
    domain_from_list = Domain.from_list(lst)
    assert domain_true == domain_from_list
    assert lst == list(domain_true.flatten().items())
Beispiel #5
0
    def _convert_to_gpyopt_domain(
        orig_domain: Domain
    ) -> Tuple[GPyOptDomain, GPyOptCategoricalValueMapper,
               GPyOptDiscreteTypeMapper]:
        """Convert a :class:`Domain` type object to :obj:`GPyOptDomain`.

        Args:
            orig_domain: :class:`Domain` to convert.

        Returns:
            A tuple of the converted :obj:`GPyOptDomain` object and a value mapper to assign each categorical
            value to an integer (0, 1, 2, 3 ...). This is done to abstract away the type of the categorical domain
            from the `GPyOpt` internals and thus arbitrary types are supported.

        Notes:
            The categorical options must be hashable. This behaviour may change in the future.
        """
        gpyopt_domain = []
        value_mapper = {}
        type_mapper = {}
        flat_domain = orig_domain.flatten()
        for names, vals in flat_domain.items():
            dim_name = utils.join_strings(names)
            domain_type = Domain.get_type(vals)
            if domain_type == Domain.Continuous:
                dim_type = BayesianOptimisation.CONTINUOUS_TYPE
            elif domain_type == Domain.Discrete:
                dim_type = BayesianOptimisation.DISCRETE_TYPE
                type_mapper[dim_name] = {v: type(v) for v in vals}
            elif domain_type == Domain.Categorical:
                dim_type = BayesianOptimisation.CATEGORICAL_TYPE
                value_mapper[dim_name] = {v: i for i, v in enumerate(vals)}
                vals = tuple(range(len(vals)))
            else:
                raise ValueError(
                    f"Badly specified subdomain {names} with values {vals}.")
            gpyopt_domain.append({
                "name": dim_name,
                "type": dim_type,
                "domain": tuple(vals)
            })
        assert len(gpyopt_domain) == len(
            orig_domain), "Mismatching dimensionality after domain conversion."
        return gpyopt_domain, value_mapper, type_mapper
def test_local_from_script_and_cmdline_named_args():
    domain = Domain(
        {
            "--x": {0, 1, 2, 3},
            "--y": [-1., 1.],
            "--z": {"acb123", "abc"}
        },
        seed=7)
    jobs = [
        Job(task="hypertunity/scheduling/tests/script.py",
            args=domain.sample().as_dict(),
            meta={"binary": "python"}) for _ in range(10)
    ]
    results = run_jobs(jobs)
    assert all([
        r.data == script.main(**{k.lstrip("-"): v
                                 for k, v in j.args.items()})
        for r, j in zip(results, jobs)
    ])
Beispiel #7
0
    def __init__(self, domain, seed=None):
        """Initialise the optimiser's domain.

        Args:
            domain: :class:`Domain`. The domain of the objective function.
            seed: (optional) :obj:`int`. The seed of the optimiser. Used for reproducibility purposes.
        """
        np.random.seed(seed)
        domain = Domain(domain.as_dict(), seed=seed)
        super(BayesianOptimisation, self).__init__(domain)
        converted_and_mappers = self._convert_to_gpyopt_domain(self.domain)
        self.gpyopt_domain, self._categorical_value_mapper, self._discrete_type_mapper = converted_and_mappers
        self._inv_categorical_value_mapper = {
            name: {v: k
                   for k, v in mapping.items()}
            for name, mapping in self._categorical_value_mapper.items()
        }
        self._data_x = np.array([[]])
        self._data_fx = np.array([[]])
        self.__is_empty_data = True
Beispiel #8
0
def test_grid_simple_discrete():
    domain = Domain({
        "x": {1, 2, 3, 4},
        "y": {-3, 2, 5},
        "z": {"small", "large"}
    })
    gs = exhaustive.GridSearch(domain=domain)
    test_utils.evaluate_discrete_3d(gs, batch_size=4, n_steps=3 * 2)
    with pytest.raises(exhaustive.ExhaustedSearchSpaceError):
        gs.run_step(batch_size=4)
    gs.reset()
    assert len(gs.run_step(batch_size=4)) == 4
Beispiel #9
0
    def __init__(self,
                 domain: Domain,
                 sample_continuous: bool = False,
                 seed: int = None):
        """Initialise the :class:`GridSearch` optimiser from a discrete domain.

        If the domain contains continuous subspaces, then they could be sampled
        if `sample_continuous` is enabled.

        Args:
            domain: :class:`Domain`. The domain to iterate over.
            sample_continuous: (optional) :obj:`bool`. Whether to sample the
                continuous subspaces of the domain.
            seed: (optional) :obj:`int`. Seed for the sampling of the continuous
                subspace if necessary.
        """
        if domain.is_continuous and not sample_continuous:
            raise DomainNotIterableError(
                "Cannot perform grid search on (partially) continuous domain. "
                "To enable grid search in this case, set the argument "
                "'sample_continuous' to True.")
        super(GridSearch, self).__init__(domain)
        (discrete_domain, categorical_domain,
         continuous_domain) = domain.split_by_type()
        # unify the discrete and the categorical into one,
        # as they can be iterated:
        self.discrete_domain = discrete_domain + categorical_domain
        if seed is not None:
            self.continuous_domain = Domain(continuous_domain.as_dict(),
                                            seed=seed)
        else:
            self.continuous_domain = continuous_domain
        self._discrete_domain_iter = iter(self.discrete_domain)
        self._is_exhausted = len(self.discrete_domain) == 0
        self.__exhausted_err = ExhaustedSearchSpaceError(
            "The domain has been exhausted. Reset the optimiser to start again."
        )
Beispiel #10
0
def test_bo_update_and_reset():
    domain = Domain({"a": {"b": [2, 3], "d": {"f": [3, 4]}}, "c": [0, 0.1]})
    bayes_opt = bo.BayesianOptimisation(domain, seed=7)
    samples = []
    n_reps = 3
    for i in range(n_reps):
        samples.extend(bayes_opt.run_step(batch_size=1, minimise=False))
        bayes_opt.update(samples[-1], base.EvaluationScore(2. * i))
    assert len(bayes_opt._data_x) == n_reps
    assert len(bayes_opt._data_fx) == n_reps
    assert np.all(bayes_opt._data_x == np.array(
        [bayes_opt._convert_to_gpyopt_sample(s) for s in samples]))
    assert np.all(bayes_opt._data_fx == 2. *
                  np.arange(n_reps).reshape(n_reps, 1))
    bayes_opt.reset()
    assert len(bayes_opt.history) == 0
Beispiel #11
0
def test_valid():
    with pytest.raises(TypeError):
        Domain({{"b": lambda x: x}, [0, 0.1]})
    with pytest.raises(DomainSpecificationError):
        Domain({1: {"b": [2, 3]}, "c": [0, 0.1]})
    with pytest.raises(DomainSpecificationError):
        Domain({"a": {"b": (1, 2, 3, 4)}, "c": [0, 0.1]})
    with pytest.raises(DomainSpecificationError):
        Domain({"a": {"b": lambda x: x}, "c": [0, 0.1]})
    with pytest.raises(ValueError):
        # this one should fail from the ast.literal_eval parsing
        Domain('{"a": {"b": lambda x: x}, "c": [0, 0.1]}')
    Domain({"a": {"b": {0, 1}}, "c": [0, 0.1]})
    Domain('{"a": {"b": {0, 1}}, "c": [0, 0.1]}')
Beispiel #12
0
def test_valid_domain(domain):
    Domain(domain)
Beispiel #13
0
def test_iter():
    with pytest.raises(DomainNotIterableError):
        list(iter(Domain({"a": {"b": {2, 3, 4}}, "c": [0, 0.1]})))
    discrete_domain = Domain({
        "a": {
            "b": {2, 3, 4},
            "j": {
                "d": {5, 6},
                "f": {
                    "g": {7}
                }
            }
        },
        "c": {"op1", 0.1}
    })
    all_samples = set(iter(discrete_domain))
    assert all_samples == {
        Sample({
            'a': {
                'b': 2,
                'j': {
                    'd': 5,
                    'f': {
                        'g': 7
                    }
                }
            },
            'c': 'op1'
        }),
        Sample({
            'a': {
                'b': 3,
                'j': {
                    'd': 5,
                    'f': {
                        'g': 7
                    }
                }
            },
            'c': 'op1'
        }),
        Sample({
            'a': {
                'b': 4,
                'j': {
                    'd': 5,
                    'f': {
                        'g': 7
                    }
                }
            },
            'c': 'op1'
        }),
        Sample({
            'a': {
                'b': 2,
                'j': {
                    'd': 6,
                    'f': {
                        'g': 7
                    }
                }
            },
            'c': 'op1'
        }),
        Sample({
            'a': {
                'b': 3,
                'j': {
                    'd': 6,
                    'f': {
                        'g': 7
                    }
                }
            },
            'c': 'op1'
        }),
        Sample({
            'a': {
                'b': 4,
                'j': {
                    'd': 6,
                    'f': {
                        'g': 7
                    }
                }
            },
            'c': 'op1'
        }),
        Sample({
            'a': {
                'b': 2,
                'j': {
                    'd': 5,
                    'f': {
                        'g': 7
                    }
                }
            },
            'c': 0.1
        }),
        Sample({
            'a': {
                'b': 3,
                'j': {
                    'd': 5,
                    'f': {
                        'g': 7
                    }
                }
            },
            'c': 0.1
        }),
        Sample({
            'a': {
                'b': 4,
                'j': {
                    'd': 5,
                    'f': {
                        'g': 7
                    }
                }
            },
            'c': 0.1
        }),
        Sample({
            'a': {
                'b': 2,
                'j': {
                    'd': 6,
                    'f': {
                        'g': 7
                    }
                }
            },
            'c': 0.1
        }),
        Sample({
            'a': {
                'b': 3,
                'j': {
                    'd': 6,
                    'f': {
                        'g': 7
                    }
                }
            },
            'c': 0.1
        }),
        Sample({
            'a': {
                'b': 4,
                'j': {
                    'd': 6,
                    'f': {
                        'g': 7
                    }
                }
            },
            'c': 0.1
        })
    }
Beispiel #14
0
def test_grid_simple_mixed():
    domain = Domain({"x": [-5., 6.], "y": {"sin", "sqr"}, "z": set(range(4))})
    with pytest.raises(exhaustive.DomainNotIterableError):
        _ = exhaustive.GridSearch(domain)
    gs = exhaustive.GridSearch(domain, sample_continuous=True, seed=93)
    assert len(gs.run_step(batch_size=8)) == 8
Beispiel #15
0
def test_as_dict():
    dict_domain = {"a": {"b": [2, 3]}, "c": [0, 0.1]}
    domain = Domain(dict_domain)
    assert domain.as_dict() == dict_domain
Beispiel #16
0
def test_as_namedtuple():
    domain = Domain({"a": {"b": {2, 3, 4}}, "c": [0, 0.1]})
    nt = domain.as_namedtuple()
    assert nt.a == namedtuple("_", "b")({2, 3, 4})
    assert nt.a.b == {2, 3, 4}
    assert nt.c == [0, 0.1]
Beispiel #17
0
def test_fail_iter_cont_domain():
    with pytest.raises(DomainNotIterableError):
        list(iter(Domain({"a": {"b": {2, 3, 4}}, "c": [0, 0.1]})))
Beispiel #18
0
def test_bo_simple_mixed():
    domain = Domain({"x": [-5., 6.], "y": {"sin", "sqr"}, "z": set(range(4))})
    bayes_opt = bo.BayesianOptimization(domain=domain, seed=7)
    test_utils.evaluate_heterogeneous_3d(bayes_opt, batch_size=7, n_steps=3)
Beispiel #19
0
def test_iter():
    discrete_domain = Domain({
        "a": {
            "b": {2, 3, 4},
            "j": {
                "d": {5, 6},
                "f": {
                    "g": {7}
                }
            }
        },
        "c": {"op1", 0.1}
    })
    all_samples = set(iter(discrete_domain))
    assert all_samples == {
        Sample({
            'a': {
                'b': 2,
                'j': {
                    'd': 5,
                    'f': {
                        'g': 7
                    }
                }
            },
            'c': 'op1'
        }),
        Sample({
            'a': {
                'b': 3,
                'j': {
                    'd': 5,
                    'f': {
                        'g': 7
                    }
                }
            },
            'c': 'op1'
        }),
        Sample({
            'a': {
                'b': 4,
                'j': {
                    'd': 5,
                    'f': {
                        'g': 7
                    }
                }
            },
            'c': 'op1'
        }),
        Sample({
            'a': {
                'b': 2,
                'j': {
                    'd': 6,
                    'f': {
                        'g': 7
                    }
                }
            },
            'c': 'op1'
        }),
        Sample({
            'a': {
                'b': 3,
                'j': {
                    'd': 6,
                    'f': {
                        'g': 7
                    }
                }
            },
            'c': 'op1'
        }),
        Sample({
            'a': {
                'b': 4,
                'j': {
                    'd': 6,
                    'f': {
                        'g': 7
                    }
                }
            },
            'c': 'op1'
        }),
        Sample({
            'a': {
                'b': 2,
                'j': {
                    'd': 5,
                    'f': {
                        'g': 7
                    }
                }
            },
            'c': 0.1
        }),
        Sample({
            'a': {
                'b': 3,
                'j': {
                    'd': 5,
                    'f': {
                        'g': 7
                    }
                }
            },
            'c': 0.1
        }),
        Sample({
            'a': {
                'b': 4,
                'j': {
                    'd': 5,
                    'f': {
                        'g': 7
                    }
                }
            },
            'c': 0.1
        }),
        Sample({
            'a': {
                'b': 2,
                'j': {
                    'd': 6,
                    'f': {
                        'g': 7
                    }
                }
            },
            'c': 0.1
        }),
        Sample({
            'a': {
                'b': 3,
                'j': {
                    'd': 6,
                    'f': {
                        'g': 7
                    }
                }
            },
            'c': 0.1
        }),
        Sample({
            'a': {
                'b': 4,
                'j': {
                    'd': 6,
                    'f': {
                        'g': 7
                    }
                }
            },
            'c': 0.1
        })
    }
Beispiel #20
0
def test_invalid_domain(domain, expectation):
    with expectation:
        Domain(domain)
Beispiel #21
0
def test_random_simple_mixed():
    domain = Domain({"x": [-5., 6.], "y": {"sin", "sqr"}, "z": set(range(4))})
    rs = random.RandomSearch(domain=domain, seed=1)
    test_utils.evaluate_heterogeneous_3d(rs, batch_size=50, n_steps=25)
Beispiel #22
0
def test_random_simple_continuous():
    domain = Domain({"x": [-1., 6.]})
    rs = random.RandomSearch(domain=domain, seed=7)
    test_utils.evaluate_continuous_1d(rs, batch_size=50, n_steps=2)
Beispiel #23
0
def test_eq():
    d1 = Domain({"a": {"b": [2, 3]}, "c": [0, 0.1]})
    d2 = Domain({"a": {"b": [2, 3]}, "c": [0, 0.1]})
    assert d1 == d2
def test_local_from_fn():
    domain = Domain({"x": [0., 1.]}, seed=7)
    jobs = [Job(task=square, args=(domain.sample(), )) for _ in range(10)]
    results = run_jobs(jobs)
    assert all(
        [r.data.value == square(*j.args).value for r, j in zip(results, jobs)])
Beispiel #25
0
def test_sampling():
    domain = Domain({"a": {"b": {2, 3, 4}}, "c": [0, 0.1]})
    for i in range(10):
        sample = domain.sample()
        assert sample["a"]["b"] in {2, 3, 4} and 0. <= sample["c"] <= 0.1
Beispiel #26
0
def test_bo_simple_continuous():
    domain = Domain({"x": [-1., 6.]})
    bayes_opt = bo.BayesianOptimization(domain=domain, seed=7)
    test_utils.evaluate_continuous_1d(bayes_opt, batch_size=2, n_steps=7)
Beispiel #27
0
def test_flatten():
    dom = Domain({"a": {"b": [0, 1]}, "c": [0, 0.1]})
    assert dom.flatten() == {("a", "b"): [0, 1], ("c", ): [0, 0.1]}
Beispiel #28
0
def test_serialisation():
    domain = Domain({"a": [1, 2], "b": {"c": {1, 2, 3}, "d": {"o1", "o2"}}})
    serialised = domain.serialise()
    deserialised = Domain.deserialise(serialised)
    assert deserialised == domain
Beispiel #29
0
class GridSearch(Optimiser):
    """Grid search pseudo-optimiser."""
    def __init__(self,
                 domain: Domain,
                 sample_continuous: bool = False,
                 seed: int = None):
        """Initialise the :class:`GridSearch` optimiser from a discrete domain.

        If the domain contains continuous subspaces, then they could be sampled
        if `sample_continuous` is enabled.

        Args:
            domain: :class:`Domain`. The domain to iterate over.
            sample_continuous: (optional) :obj:`bool`. Whether to sample the
                continuous subspaces of the domain.
            seed: (optional) :obj:`int`. Seed for the sampling of the continuous
                subspace if necessary.
        """
        if domain.is_continuous and not sample_continuous:
            raise DomainNotIterableError(
                "Cannot perform grid search on (partially) continuous domain. "
                "To enable grid search in this case, set the argument "
                "'sample_continuous' to True.")
        super(GridSearch, self).__init__(domain)
        (discrete_domain, categorical_domain,
         continuous_domain) = domain.split_by_type()
        # unify the discrete and the categorical into one,
        # as they can be iterated:
        self.discrete_domain = discrete_domain + categorical_domain
        if seed is not None:
            self.continuous_domain = Domain(continuous_domain.as_dict(),
                                            seed=seed)
        else:
            self.continuous_domain = continuous_domain
        self._discrete_domain_iter = iter(self.discrete_domain)
        self._is_exhausted = len(self.discrete_domain) == 0
        self.__exhausted_err = ExhaustedSearchSpaceError(
            "The domain has been exhausted. Reset the optimiser to start again."
        )

    def run_step(self, batch_size: int = 1, **kwargs) -> List[Sample]:
        """Get the next `batch_size` samples from the Cartesian-product walk
        over the domain.

        Args:
            batch_size: (optional) :obj:`int`. The number of samples to suggest
                at once.

        Returns:
            A list of :class:`Sample` instances from the domain.

        Raises:
            :class:`ExhaustedSearchSpaceError`: if the (discrete part of the)
                domain is fully exhausted and no samples can be generated.

        Notes:
            This method does not guarantee that the returned list of
            :class:`Samples` will be of length `batch_size`. This is due to the
            size of the domain and the fact that samples will not be repeated.
        """
        if self._is_exhausted:
            raise self.__exhausted_err

        samples = []
        for i in range(batch_size):
            try:
                discrete = next(self._discrete_domain_iter)
            except StopIteration:
                self._is_exhausted = True
                break
            if self.continuous_domain:
                continuous = self.continuous_domain.sample()
                samples.append(discrete + continuous)
            else:
                samples.append(discrete)
        if samples:
            return samples
        raise self.__exhausted_err

    def reset(self):
        """Reset the optimiser to the beginning of the Cartesian-product walk."""
        super(GridSearch, self).reset()
        self._discrete_domain_iter = iter(self.discrete_domain)
        self._is_exhausted = len(self.discrete_domain) == 0