def test_compute_lnZ(self): v = T.matrix('v') z = T.iscalar('z') V = cartesian([(0, 1)] * self.input_size, dtype=config.floatX) #H = cartesian([(0, 1)] * self.hidden_size, dtype=config.floatX) # We simulate having an infinite number of hidden units by adding lot of hidden units with parameters set to 0. nb_hidden_units_to_add = 10000 model = iRBM(input_size=self.model.input_size, hidden_size=self.model.hidden_size + nb_hidden_units_to_add, beta=self.model.beta.get_value()) model.W.set_value(np.r_[self.model.W.get_value(), np.zeros((nb_hidden_units_to_add, model.input_size), dtype=theano.config.floatX)]) model.b.set_value(np.r_[self.model.b.get_value(), np.zeros((nb_hidden_units_to_add,), dtype=theano.config.floatX)]) model.c.set_value(self.model.c.get_value()) v = T.matrix('v') z = T.iscalar('z') F_vz = theano.function([v, z], model.F(v, z)) energies = [] for z in range(1, model.hidden_size+1): energies.append(F_vz(V, z)) lnZ = logsumexp(-np.array(energies)).eval() lnZ_using_free_energy = theano.function([v], logsumexp(-self.model.free_energy(v))) assert_almost_equal(lnZ_using_free_energy(V), lnZ, decimal=5) # decimal=5 needed for float32
def test_verify_AIS(self): model = iRBM(input_size=self.input_size, hidden_size=self.hidden_size, beta=self.beta) model.W.set_value(self.W) model.b.set_value(self.b) model.c.set_value(self.c) # Brute force print "Computing lnZ using brute force (i.e. summing the free energy of all posible $v$)..." V = theano.shared( value=cartesian([(0, 1)] * self.input_size, dtype=config.floatX)) brute_force_lnZ = logsumexp(-model.free_energy(V), 0) f_brute_force_lnZ = theano.function([], brute_force_lnZ) params_bak = [param.get_value() for param in model.parameters] print "Approximating lnZ using AIS..." import time start = time.time() try: experiment_path = tempfile.mkdtemp() result = compute_AIS(model, M=self.nb_samples, betas=self.betas, seed=1234, experiment_path=experiment_path, force=True) logcummean_Z, logcumstd_Z_down, logcumstd_Z_up = result[ 'logcummean_Z'], result['logcumstd_Z_down'], result[ 'logcumstd_Z_up'] std_lnZ = result['std_lnZ'] print "{0} sec".format(time.time() - start) import pylab as plt plt.gca().set_xmargin(0.1) plt.errorbar(range(1, self.nb_samples + 1), logcummean_Z, yerr=[std_lnZ, std_lnZ], fmt='or') plt.errorbar(range(1, self.nb_samples + 1), logcummean_Z, yerr=[logcumstd_Z_down, logcumstd_Z_up], fmt='ob') plt.plot([1, self.nb_samples], [f_brute_force_lnZ()] * 2, '--g') plt.ticklabel_format(useOffset=False, axis='y') plt.show() AIS_logZ = logcummean_Z[-1] assert_array_equal(params_bak[0], model.W.get_value()) assert_array_equal(params_bak[1], model.b.get_value()) assert_array_equal(params_bak[2], model.c.get_value()) print np.abs(AIS_logZ - f_brute_force_lnZ()) assert_almost_equal(AIS_logZ, f_brute_force_lnZ(), decimal=2) finally: shutil.rmtree(experiment_path)
def test_beta(self): beta = 1.1 model = iRBM(input_size=self.input_size, #hidden_size=1000, beta=beta) rng = np.random.RandomState(42) v1 = (rng.rand(1, self.input_size) > 0.5).astype(config.floatX) v = T.matrix('v') z = T.iscalar('z') F_vz = theano.function([v, z], model.F(v, z)) # Suppose all parameters of the models have a value of 0 (i.e. l=0), then # as we add hidden units, $Z(v)=\sum_z exp(-F(v, z))$ should converge to geometric_ratio = T.exp((1.-model.beta) * T.nnet.softplus(0.)).eval() log_shifted_geometric_convergence = np.float32(np.log(geometric_ratio / (1. - geometric_ratio))) Zv_theorical_convergence = log_shifted_geometric_convergence # In fact, we can estimate the number of hidden units needed to be at $\epsilon$ of the convergence point. eps = 1e-7 hidden_size = (np.log(eps)+np.log(1-geometric_ratio))/np.log(geometric_ratio) hidden_size = int(np.ceil(hidden_size)) model.hidden_size = hidden_size model.W.set_value(np.zeros((model.hidden_size, model.input_size), dtype=theano.config.floatX)) model.b.set_value(np.zeros((model.hidden_size,), dtype=theano.config.floatX)) free_energies = [] for z in range(1, model.hidden_size+1): free_energies.append(F_vz(v1, z)) Z_v = logsumexp(-np.array(free_energies)).eval() print hidden_size, ':', Z_v, Zv_theorical_convergence, abs(Zv_theorical_convergence-Z_v) assert_almost_equal(Z_v, Zv_theorical_convergence, decimal=6)
def test_gradients_auto_vs_manual(self): rng = np.random.RandomState(42) batch_size = 5 input_size = 10 model = iRBM(input_size=input_size, hidden_size=32, beta=1.01, CDk=1, rng=np.random.RandomState(42)) W = rng.rand(model.hidden_size, model.input_size).astype(theano.config.floatX) model.W = theano.shared(value=W.astype(theano.config.floatX), name='W', borrow=True) b = rng.rand(model.hidden_size).astype(theano.config.floatX) model.b = theano.shared(value=b.astype(theano.config.floatX), name='b', borrow=True) c = rng.rand(model.input_size).astype(theano.config.floatX) model.c = theano.shared(value=c.astype(theano.config.floatX), name='c', borrow=True) params = [model.W, model.b, model.c] chain_start = T.matrix('start') chain_end = T.matrix('end') chain_start_value = (rng.rand(batch_size, input_size) > 0.5).astype(theano.config.floatX) chain_end_value = (rng.rand(batch_size, input_size) > 0.5).astype(theano.config.floatX) chain_start.tag.test_value = chain_start_value chain_end.tag.test_value = chain_end_value ### Computing gradients using automatic differentation ### cost = T.mean(model.free_energy(chain_start)) - T.mean(model.free_energy(chain_end)) gparams_auto = T.grad(cost, params, consider_constant=[chain_end]) ### Computing gradients manually ### h = RBM.sample_h_given_v(model, chain_start, return_probs=True) _h = RBM.sample_h_given_v(model, chain_end, return_probs=True) icdf = model.icdf_z_given_v(chain_start) _icdf = model.icdf_z_given_v(chain_end) if model.penalty == "softplus_bi": penalty = model.beta * T.nnet.sigmoid(model.b) elif self.penalty == "softplus0": penalty = model.beta * T.nnet.sigmoid(0) grad_W = (T.dot(chain_end.T, _h*_icdf) - T.dot(chain_start.T, h*icdf)).T / batch_size grad_b = T.mean((_h-penalty)*_icdf - (h-penalty)*icdf, axis=0) grad_c = T.mean(chain_end - chain_start, axis=0) gparams_manual = [grad_W, grad_b, grad_c] grad_W.name, grad_b.name, grad_c.name = "grad_W", "grad_b", "grad_c" for gparam_auto, gparam_manual in zip(gparams_auto, gparams_manual): param1 = gparam_auto.eval({chain_start: chain_start_value, chain_end: chain_end_value}) param2 = gparam_manual.eval({chain_start: chain_start_value, chain_end: chain_end_value}) assert_array_almost_equal(param1, param2, err_msg=gparam_manual.name, decimal=5) # decimal=5 needed for float32
def test_free_energy(self): v = T.matrix('v') h = T.matrix('h') z = T.iscalar('z') logsumexp_E = theano.function([v, h, z], -logsumexp(-self.model.E(v, h, z))) F_vz = theano.function([v, z], self.model.F(v, z)) rng = np.random.RandomState(42) v1 = (rng.rand(1, self.input_size) > 0.5).astype(config.floatX) H = cartesian([(0, 1)] * self.hidden_size, dtype=config.floatX) # Check the free energy F(v, z) is correct. for z in range(1, self.hidden_size + 1): h = np.array(H[::2**(self.hidden_size - z)]) free_energy_vz = logsumexp_E(v1, h, z) assert_almost_equal(F_vz(v1, z), free_energy_vz, decimal=6) # We now check that free energy F(v) assumes an infinite number of hidden units. # To do so, we create another model that has an infinite (read a lot) number of hidden units with parameters set to 0. nb_hidden_units_to_add = 10000 model = iRBM(input_size=self.model.input_size, hidden_size=self.model.hidden_size + nb_hidden_units_to_add, beta=self.model.beta.get_value()) model.W.set_value(np.r_[self.model.W.get_value(), np.zeros( (nb_hidden_units_to_add, model.input_size), dtype=theano.config.floatX)]) model.b.set_value( np.r_[self.model.b.get_value(), np.zeros( (nb_hidden_units_to_add, ), dtype=theano.config.floatX)]) model.c.set_value(self.model.c.get_value()) v = T.matrix('v') z = T.iscalar('z') F_vz = theano.function([v, z], model.F(v, z)) free_energies_vz = [] for z in range(1, model.hidden_size + 1): free_energies_vz.append(F_vz(v1, z)) Fv = -logsumexp(-np.array(free_energies_vz)).eval() v = T.matrix('v') free_energy = theano.function([v], self.model.free_energy(v)) assert_array_almost_equal(free_energy(v1), [Fv], decimal=5) # decimal=5 needed for float32 v2 = np.tile(v1, (self.batch_size, 1)) assert_array_almost_equal(free_energy(v2), [Fv] * self.batch_size, decimal=5) # decimal=5 needed for float32
def test_base_rate(self): # All binary combinaisons for V and H_z V = cartesian([(0, 1)] * self.input_size, dtype=config.floatX) #H = cartesian([(0, 1)] * self.hidden_size, dtype=config.floatX) base_rates = [] # Add the uniform base rate, i.e. all parameters of the model are set to 0. base_rates.append(self.model.get_base_rate()) # Add the base rate where visible biases are the ones from the model. base_rates.append(self.model.get_base_rate('c')) # Add the base rate where hidden biases are the ones from the model. # base_rates.append(self.model.get_base_rate('b')) # Not implemented for base_rate, anneable_params in base_rates: print base_rate base_rate_lnZ = base_rate.compute_lnZ().eval().astype( config.floatX) # We simulate having an infinite number of hidden units by adding lot of hidden units with parameters set to 0. nb_hidden_units_to_add = 10000 model = iRBM(input_size=base_rate.input_size, hidden_size=base_rate.hidden_size + nb_hidden_units_to_add, beta=base_rate.beta.get_value()) model.W = T.join( 0, base_rate.W, np.zeros((nb_hidden_units_to_add, model.input_size), dtype=theano.config.floatX)) model.b = T.join( 0, base_rate.b, np.zeros((nb_hidden_units_to_add, ), dtype=theano.config.floatX)) model.c = base_rate.c v = T.matrix('v') z = T.iscalar('z') F_vz = theano.function([v, z], model.F(v, z)) energies = [] for z in range(1, model.hidden_size + 1): energies.append(F_vz(V, z)) brute_force_lnZ = logsumexp(-np.array(energies)).eval() assert_almost_equal(brute_force_lnZ.astype(config.floatX), base_rate_lnZ, decimal=5) theano_lnZ = logsumexp(-base_rate.free_energy(V), axis=0).eval() assert_almost_equal(theano_lnZ.astype(config.floatX), base_rate_lnZ, decimal=6)
def test_sample_z_given_v(self): v = T.matrix('v') z = T.iscalar('z') v1 = np.random.rand(1, self.input_size).astype(config.floatX) # We simulate having an infinite number of hidden units by adding lot of hidden units with parameters set to 0. nb_hidden_units_to_add = 10000 model = iRBM(input_size=self.model.input_size, hidden_size=self.model.hidden_size + nb_hidden_units_to_add, beta=self.model.beta.get_value()) model.W.set_value(np.r_[self.model.W.get_value(), np.zeros((nb_hidden_units_to_add, model.input_size), dtype=theano.config.floatX)]) model.b.set_value(np.r_[self.model.b.get_value(), np.zeros((nb_hidden_units_to_add,), dtype=theano.config.floatX)]) model.c.set_value(self.model.c.get_value()) v = T.matrix('v') z = T.iscalar('z') F_vz = theano.function([v, z], model.F(v, z)) energies = [] for z in range(1, model.hidden_size+1): energies.append(F_vz(v1, z)) energies = np.array(energies).T neg_log_probs = energies - -logsumexp(-energies, axis=1).eval() probs = np.exp(-neg_log_probs) expected_icdf = np.cumsum(probs[:, ::-1], axis=1)[:, ::-1] expected_icdf = expected_icdf[:, :self.model.hidden_size] # Test inverse cdf v = T.matrix('v') icdf_z_given_v = theano.function([v], self.model.icdf_z_given_v(v)) assert_array_almost_equal(icdf_z_given_v(v1), expected_icdf, decimal=5) # decimal=5 needed for float32 batch_size = 500000 self.model.batch_size = batch_size sample_zmask_given_v = theano.function([v], self.model.sample_zmask_given_v(v)) v2 = np.tile(v1, (self.model.batch_size, 1)) #theano.printing.pydotprint(sample_zmask_given_v) z_mask = sample_zmask_given_v(v2) # First hidden units should always be considered i.e. z_mask[:, 0] == 1 assert_equal(np.sum(z_mask[:, 0] == 0, axis=0), 0) # Test that sampled masks are as expected i.e. equal expected_icdf freq_per_z = np.sum(z_mask, axis=0) / self.model.batch_size assert_array_almost_equal(freq_per_z, expected_icdf[0], decimal=3, err_msg="Tested using MC sampling, rerun it to be certain that is an error or increase 'batch_size'.")
def test_verify_AIS(self): model = iRBM(input_size=self.input_size, hidden_size=self.hidden_size, beta=self.beta) model.W.set_value(self.W) model.b.set_value(self.b) model.c.set_value(self.c) # Brute force print "Computing lnZ using brute force (i.e. summing the free energy of all posible $v$)..." V = theano.shared(value=cartesian([(0, 1)] * self.input_size, dtype=config.floatX)) brute_force_lnZ = logsumexp(-model.free_energy(V), 0) f_brute_force_lnZ = theano.function([], brute_force_lnZ) params_bak = [param.get_value() for param in model.parameters] print "Approximating lnZ using AIS..." import time start = time.time() try: ais_working_dir = tempfile.mkdtemp() result = compute_AIS(model, M=self.nb_samples, betas=self.betas, seed=1234, ais_working_dir=ais_working_dir, force=True) logcummean_Z, logcumstd_Z_down, logcumstd_Z_up = result['logcummean_Z'], result['logcumstd_Z_down'], result['logcumstd_Z_up'] std_lnZ = result['std_lnZ'] print "{0} sec".format(time.time() - start) import pylab as plt plt.gca().set_xmargin(0.1) plt.errorbar(range(1, self.nb_samples+1), logcummean_Z, yerr=[std_lnZ, std_lnZ], fmt='or') plt.errorbar(range(1, self.nb_samples+1), logcummean_Z, yerr=[logcumstd_Z_down, logcumstd_Z_up], fmt='ob') plt.plot([1, self.nb_samples], [f_brute_force_lnZ()]*2, '--g') plt.ticklabel_format(useOffset=False, axis='y') plt.show() AIS_logZ = logcummean_Z[-1] assert_array_equal(params_bak[0], model.W.get_value()) assert_array_equal(params_bak[1], model.b.get_value()) assert_array_equal(params_bak[2], model.c.get_value()) print np.abs(AIS_logZ - f_brute_force_lnZ()) assert_almost_equal(AIS_logZ, f_brute_force_lnZ(), decimal=2) finally: shutil.rmtree(ais_working_dir)
def test_free_energy(self): v = T.matrix('v') h = T.matrix('h') z = T.iscalar('z') logsumexp_E = theano.function([v, h, z], -logsumexp(-self.model.E(v, h, z))) F_vz = theano.function([v, z], self.model.F(v, z)) rng = np.random.RandomState(42) v1 = (rng.rand(1, self.input_size) > 0.5).astype(config.floatX) H = cartesian([(0, 1)] * self.hidden_size, dtype=config.floatX) # Check the free energy F(v, z) is correct. for z in range(1, self.hidden_size+1): h = np.array(H[::2**(self.hidden_size-z)]) free_energy_vz = logsumexp_E(v1, h, z) assert_almost_equal(F_vz(v1, z), free_energy_vz, decimal=6) # We now check that free energy F(v) assumes an infinite number of hidden units. # To do so, we create another model that has an infinite (read a lot) number of hidden units with parameters set to 0. nb_hidden_units_to_add = 10000 model = iRBM(input_size=self.model.input_size, hidden_size=self.model.hidden_size + nb_hidden_units_to_add, beta=self.model.beta.get_value()) model.W.set_value(np.r_[self.model.W.get_value(), np.zeros((nb_hidden_units_to_add, model.input_size), dtype=theano.config.floatX)]) model.b.set_value(np.r_[self.model.b.get_value(), np.zeros((nb_hidden_units_to_add,), dtype=theano.config.floatX)]) model.c.set_value(self.model.c.get_value()) v = T.matrix('v') z = T.iscalar('z') F_vz = theano.function([v, z], model.F(v, z)) free_energies_vz = [] for z in range(1, model.hidden_size+1): free_energies_vz.append(F_vz(v1, z)) Fv = -logsumexp(-np.array(free_energies_vz)).eval() v = T.matrix('v') free_energy = theano.function([v], self.model.free_energy(v)) assert_array_almost_equal(free_energy(v1), [Fv], decimal=5) # decimal=5 needed for float32 v2 = np.tile(v1, (self.batch_size, 1)) assert_array_almost_equal(free_energy(v2), [Fv]*self.batch_size, decimal=5) # decimal=5 needed for float32
def setUp(self): self.input_size = 4 self.hidden_size = 7 self.beta = 1.01 self.batch_size = 100 rng = np.random.RandomState(42) self.W = rng.randn(self.hidden_size, self.input_size).astype(config.floatX) self.b = rng.randn(self.hidden_size).astype(config.floatX) self.c = rng.randn(self.input_size).astype(config.floatX) self.model = iRBM(input_size=self.input_size, hidden_size=self.hidden_size, beta=self.beta) self.model.W.set_value(self.W) self.model.b.set_value(self.b) self.model.c.set_value(self.c)
def test_beta(self): beta = 1.1 model = iRBM( input_size=self.input_size, #hidden_size=1000, beta=beta) rng = np.random.RandomState(42) v1 = (rng.rand(1, self.input_size) > 0.5).astype(config.floatX) v = T.matrix('v') z = T.iscalar('z') F_vz = theano.function([v, z], model.F(v, z)) # Suppose all parameters of the models have a value of 0 (i.e. l=0), then # as we add hidden units, $Z(v)=\sum_z exp(-F(v, z))$ should converge to geometric_ratio = T.exp((1. - model.beta) * T.nnet.softplus(0.)).eval() log_shifted_geometric_convergence = np.float32( np.log(geometric_ratio / (1. - geometric_ratio))) Zv_theorical_convergence = log_shifted_geometric_convergence # In fact, we can estimate the number of hidden units needed to be at $\epsilon$ of the convergence point. eps = 1e-7 hidden_size = (np.log(eps) + np.log(1 - geometric_ratio)) / np.log(geometric_ratio) hidden_size = int(np.ceil(hidden_size)) model.hidden_size = hidden_size model.W.set_value( np.zeros((model.hidden_size, model.input_size), dtype=theano.config.floatX)) model.b.set_value( np.zeros((model.hidden_size, ), dtype=theano.config.floatX)) free_energies = [] for z in range(1, model.hidden_size + 1): free_energies.append(F_vz(v1, z)) Z_v = logsumexp(-np.array(free_energies)).eval() print hidden_size, ':', Z_v, Zv_theorical_convergence, abs( Zv_theorical_convergence - Z_v) assert_almost_equal(Z_v, Zv_theorical_convergence, decimal=6)
def test_base_rate(self): # All binary combinaisons for V and H_z V = cartesian([(0, 1)] * self.input_size, dtype=config.floatX) #H = cartesian([(0, 1)] * self.hidden_size, dtype=config.floatX) base_rates = [] # Add the uniform base rate, i.e. all parameters of the model are set to 0. base_rates.append(self.model.get_base_rate()) # Add the base rate where visible biases are the ones from the model. base_rates.append(self.model.get_base_rate('c')) # Add the base rate where hidden biases are the ones from the model. # base_rates.append(self.model.get_base_rate('b')) # Not implemented for base_rate, anneable_params in base_rates: print base_rate base_rate_lnZ = base_rate.compute_lnZ().eval().astype(config.floatX) # We simulate having an infinite number of hidden units by adding lot of hidden units with parameters set to 0. nb_hidden_units_to_add = 10000 model = iRBM(input_size=base_rate.input_size, hidden_size=base_rate.hidden_size + nb_hidden_units_to_add, beta=base_rate.beta.get_value()) model.W = T.join(0, base_rate.W, np.zeros((nb_hidden_units_to_add, model.input_size), dtype=theano.config.floatX)) model.b = T.join(0, base_rate.b, np.zeros((nb_hidden_units_to_add,), dtype=theano.config.floatX)) model.c = base_rate.c v = T.matrix('v') z = T.iscalar('z') F_vz = theano.function([v, z], model.F(v, z)) energies = [] for z in range(1, model.hidden_size+1): energies.append(F_vz(V, z)) brute_force_lnZ = logsumexp(-np.array(energies)).eval() assert_almost_equal(brute_force_lnZ.astype(config.floatX), base_rate_lnZ, decimal=5) theano_lnZ = logsumexp(-base_rate.free_energy(V), axis=0).eval() assert_almost_equal(theano_lnZ.astype(config.floatX), base_rate_lnZ, decimal=6)
def test_compute_lnZ(self): v = T.matrix('v') z = T.iscalar('z') V = cartesian([(0, 1)] * self.input_size, dtype=config.floatX) #H = cartesian([(0, 1)] * self.hidden_size, dtype=config.floatX) # We simulate having an infinite number of hidden units by adding lot of hidden units with parameters set to 0. nb_hidden_units_to_add = 10000 model = iRBM(input_size=self.model.input_size, hidden_size=self.model.hidden_size + nb_hidden_units_to_add, beta=self.model.beta.get_value()) model.W.set_value(np.r_[self.model.W.get_value(), np.zeros( (nb_hidden_units_to_add, model.input_size), dtype=theano.config.floatX)]) model.b.set_value( np.r_[self.model.b.get_value(), np.zeros( (nb_hidden_units_to_add, ), dtype=theano.config.floatX)]) model.c.set_value(self.model.c.get_value()) v = T.matrix('v') z = T.iscalar('z') F_vz = theano.function([v, z], model.F(v, z)) energies = [] for z in range(1, model.hidden_size + 1): energies.append(F_vz(V, z)) lnZ = logsumexp(-np.array(energies)).eval() lnZ_using_free_energy = theano.function( [v], logsumexp(-self.model.free_energy(v))) assert_almost_equal(lnZ_using_free_energy(V), lnZ, decimal=5) # decimal=5 needed for float32
def model_factory(model_name, input_size, hyperparams): #Set learning rate method that will be used. if hyperparams["ConstantLearningRate"] is not None: infos = hyperparams["ConstantLearningRate"].split() lr = float(infos[0]) lr_method = ConstantLearningRate(lr=lr) elif hyperparams["ADAGRAD"] is not None: infos = hyperparams["ADAGRAD"].split() lr = float(infos[0]) eps = float(infos[1]) if len(infos) > 1 else 1e-6 lr_method = ADAGRAD(lr=lr, eps=eps) else: raise ValueError("The update rule is mandatory!") #Set regularization method that will be used. regularization_method = NoRegularization() if hyperparams["L1Regularization"] is not None and hyperparams["L1Regularization"] != 0: lambda_factor = float(hyperparams["L1Regularization"]) regularization_method = L1Regularization(lambda_factor) elif hyperparams["L2Regularization"] is not None and hyperparams["L2Regularization"] != 0: lambda_factor = float(hyperparams["L2Regularization"]) regularization_method = L2Regularization(lambda_factor) #Set contrastive divergence method to use. CD_method = ContrastiveDivergence() if hyperparams["PCD"]: CD_method = PersistentCD(input_size, nb_particles=hyperparams['batch_size']) rng = np.random.RandomState(hyperparams["seed"]) #Build model if model_name == "rbm": from iRBM.models.rbm import RBM model = RBM(input_size=input_size, hidden_size=hyperparams["size"], learning_rate=lr_method, regularization=regularization_method, CD=CD_method, CDk=hyperparams["cdk"], rng=rng ) elif model_name == "orbm": from iRBM.models.orbm import oRBM model = oRBM(input_size=input_size, hidden_size=hyperparams["size"], beta=hyperparams["beta"], learning_rate=lr_method, regularization=regularization_method, CD=CD_method, CDk=hyperparams["cdk"], rng=rng ) elif model_name == "irbm": from iRBM.models.irbm import iRBM model = iRBM(input_size=input_size, hidden_size=hyperparams["size"], beta=hyperparams["beta"], learning_rate=lr_method, regularization=regularization_method, CD=CD_method, CDk=hyperparams["cdk"], rng=rng ) return model
def test_gradients_auto_vs_manual(self): rng = np.random.RandomState(42) batch_size = 5 input_size = 10 model = iRBM(input_size=input_size, hidden_size=32, beta=1.01, CDk=1, rng=np.random.RandomState(42)) W = rng.rand(model.hidden_size, model.input_size).astype(theano.config.floatX) model.W = theano.shared(value=W.astype(theano.config.floatX), name='W', borrow=True) b = rng.rand(model.hidden_size).astype(theano.config.floatX) model.b = theano.shared(value=b.astype(theano.config.floatX), name='b', borrow=True) c = rng.rand(model.input_size).astype(theano.config.floatX) model.c = theano.shared(value=c.astype(theano.config.floatX), name='c', borrow=True) params = [model.W, model.b, model.c] chain_start = T.matrix('start') chain_end = T.matrix('end') chain_start_value = (rng.rand(batch_size, input_size) > 0.5).astype( theano.config.floatX) chain_end_value = (rng.rand(batch_size, input_size) > 0.5).astype( theano.config.floatX) chain_start.tag.test_value = chain_start_value chain_end.tag.test_value = chain_end_value ### Computing gradients using automatic differentation ### cost = T.mean(model.free_energy(chain_start)) - T.mean( model.free_energy(chain_end)) gparams_auto = T.grad(cost, params, consider_constant=[chain_end]) ### Computing gradients manually ### h = RBM.sample_h_given_v(model, chain_start, return_probs=True) _h = RBM.sample_h_given_v(model, chain_end, return_probs=True) icdf = model.icdf_z_given_v(chain_start) _icdf = model.icdf_z_given_v(chain_end) if model.penalty == "softplus_bi": penalty = model.beta * T.nnet.sigmoid(model.b) elif self.penalty == "softplus0": penalty = model.beta * T.nnet.sigmoid(0) grad_W = (T.dot(chain_end.T, _h * _icdf) - T.dot(chain_start.T, h * icdf)).T / batch_size grad_b = T.mean((_h - penalty) * _icdf - (h - penalty) * icdf, axis=0) grad_c = T.mean(chain_end - chain_start, axis=0) gparams_manual = [grad_W, grad_b, grad_c] grad_W.name, grad_b.name, grad_c.name = "grad_W", "grad_b", "grad_c" for gparam_auto, gparam_manual in zip(gparams_auto, gparams_manual): param1 = gparam_auto.eval({ chain_start: chain_start_value, chain_end: chain_end_value }) param2 = gparam_manual.eval({ chain_start: chain_start_value, chain_end: chain_end_value }) assert_array_almost_equal( param1, param2, err_msg=gparam_manual.name, decimal=5) # decimal=5 needed for float32
def model_factory(model_name, input_size, hyperparams): #Set learning rate method that will be used. if hyperparams["ConstantLearningRate"] is not None: infos = hyperparams["ConstantLearningRate"].split() lr = float(infos[0]) lr_method = ConstantLearningRate(lr=lr) elif hyperparams["ADAGRAD"] is not None: infos = hyperparams["ADAGRAD"].split() lr = float(infos[0]) eps = float(infos[1]) if len(infos) > 1 else 1e-6 lr_method = ADAGRAD(lr=lr, eps=eps) else: raise ValueError("The update rule is mandatory!") #Set regularization method that will be used. regularization_method = NoRegularization() if hyperparams["L1Regularization"] is not None and hyperparams[ "L1Regularization"] != 0: lambda_factor = float(hyperparams["L1Regularization"]) regularization_method = L1Regularization(lambda_factor) elif hyperparams["L2Regularization"] is not None and hyperparams[ "L2Regularization"] != 0: lambda_factor = float(hyperparams["L2Regularization"]) regularization_method = L2Regularization(lambda_factor) #Set contrastive divergence method to use. CD_method = ContrastiveDivergence() if hyperparams["PCD"]: CD_method = PersistentCD(input_size, nb_particles=hyperparams['batch_size']) rng = np.random.RandomState(hyperparams["seed"]) #Build model if model_name == "rbm": from iRBM.models.rbm import RBM model = RBM(input_size=input_size, hidden_size=hyperparams["size"], learning_rate=lr_method, regularization=regularization_method, CD=CD_method, CDk=hyperparams["cdk"], rng=rng) elif model_name == "orbm": from iRBM.models.orbm import oRBM model = oRBM(input_size=input_size, hidden_size=hyperparams["size"], beta=hyperparams["beta"], learning_rate=lr_method, regularization=regularization_method, CD=CD_method, CDk=hyperparams["cdk"], rng=rng) elif model_name == "irbm": from iRBM.models.irbm import iRBM model = iRBM(input_size=input_size, hidden_size=hyperparams["size"], beta=hyperparams["beta"], learning_rate=lr_method, regularization=regularization_method, CD=CD_method, CDk=hyperparams["cdk"], rng=rng) return model
def test_sample_z_given_v(self): v = T.matrix('v') z = T.iscalar('z') v1 = np.random.rand(1, self.input_size).astype(config.floatX) # We simulate having an infinite number of hidden units by adding lot of hidden units with parameters set to 0. nb_hidden_units_to_add = 10000 model = iRBM(input_size=self.model.input_size, hidden_size=self.model.hidden_size + nb_hidden_units_to_add, beta=self.model.beta.get_value()) model.W.set_value(np.r_[self.model.W.get_value(), np.zeros( (nb_hidden_units_to_add, model.input_size), dtype=theano.config.floatX)]) model.b.set_value( np.r_[self.model.b.get_value(), np.zeros( (nb_hidden_units_to_add, ), dtype=theano.config.floatX)]) model.c.set_value(self.model.c.get_value()) v = T.matrix('v') z = T.iscalar('z') F_vz = theano.function([v, z], model.F(v, z)) energies = [] for z in range(1, model.hidden_size + 1): energies.append(F_vz(v1, z)) energies = np.array(energies).T neg_log_probs = energies - -logsumexp(-energies, axis=1).eval() probs = np.exp(-neg_log_probs) expected_icdf = np.cumsum(probs[:, ::-1], axis=1)[:, ::-1] expected_icdf = expected_icdf[:, :self.model.hidden_size] # Test inverse cdf v = T.matrix('v') icdf_z_given_v = theano.function([v], self.model.icdf_z_given_v(v)) assert_array_almost_equal(icdf_z_given_v(v1), expected_icdf, decimal=5) # decimal=5 needed for float32 batch_size = 500000 self.model.batch_size = batch_size sample_zmask_given_v = theano.function( [v], self.model.sample_zmask_given_v(v)) v2 = np.tile(v1, (self.model.batch_size, 1)) #theano.printing.pydotprint(sample_zmask_given_v) z_mask = sample_zmask_given_v(v2) # First hidden units should always be considered i.e. z_mask[:, 0] == 1 assert_equal(np.sum(z_mask[:, 0] == 0, axis=0), 0) # Test that sampled masks are as expected i.e. equal expected_icdf freq_per_z = np.sum(z_mask, axis=0) / self.model.batch_size assert_array_almost_equal( freq_per_z, expected_icdf[0], decimal=3, err_msg= "Tested using MC sampling, rerun it to be certain that is an error or increase 'batch_size'." )