Beispiel #1
0
def parse_temperatures(database: SqliteUtil, tmin_files: List[str],
                       tmax_files: List[str], steps: int, day: int,
                       src_epsg: int, prj_epsg: int):

    log.info('Allocating tables for air temperatures.')
    create_tables(database)

    files = zip(tmax_files, tmin_files)
    profile_count = 0
    point_count = 0
    temperatures = []
    points = []
    profiles = {}
    n = 1

    transformer = Transformer.from_crs(f'epsg:{src_epsg}',
                                       f'epsg:{prj_epsg}',
                                       always_xy=True,
                                       skip_equivalent=True)
    project = transformer.transform

    def apply(id: int, temp: Callable):
        for step in range(steps):
            prop = step / steps
            row = (id, step, int(86400 * prop), temp(24 * prop))
            yield row

    log.info('Loading temperatures from netCDF4 files.')
    for tmax_file, tmin_file in files:
        tmaxnc = Dataset(tmax_file, 'r')
        tminnc = Dataset(tmin_file, 'r')

        lons = tmaxnc.variables['lon']
        lats = tmaxnc.variables['lat']
        shape = tmaxnc.variables['tmax'].shape

        tmaxs = tmaxnc.variables['tmax'][day]
        tmins = tminnc.variables['tmin'][day]

        for i in range(shape[1]):
            for j in range(shape[2]):
                tmax = tmaxs[i][j]
                tmin = tmins[i][j]

                if tmax != -9999.0:
                    x, y = project(lons[i][j], lats[i][j])
                    idx = f'{tmax}-{tmin}'

                    if idx not in profiles:
                        temp = iterpolation(tmin, tmax, 5, 15)
                        temperatures.extend(apply(profile_count, temp))
                        profiles[idx] = profile_count
                        profile_count += 1

                    profile = profiles[idx]
                    point = Point(point_count, x, y, profile)
                    points.append(point)
                    point_count += 1

                    if point_count == n:
                        log.info(
                            f'Loading air temperature reading {point_count}.')
                        n <<= 1

        tmaxnc.close()
        tminnc.close()

    if point_count != n >> 1:
        log.info(f'Loading air temperature reading {point_count}.')

    def load():
        for point in points:
            x, y = point.x, point.y
            yield (point.id, (x, y, x, y), point.profile)

    log.info('Starting network update for air temperatures.')
    log.info('Building spatial index from temperature profile locations.')
    index = Index(load())
    used = set()

    log.info('Loading network links.')
    links = load_links(database)

    log.info('Applying temperature profiles to links.')
    iter_links = counter(links, 'Applying profile to link %s.')
    for link in iter_links:
        result = index.nearest((link.x, link.y, link.x, link.y), objects=True)
        profile = next(result).object
        link.air_temperature = profile
        used.add(profile)

    def dump_links():
        for link in links:
            yield (link.id, link.air_temperature)

    log.info('Writing updated links to database.')
    database.insert_values('temp_links', dump_links(), 2)
    database.connection.commit()
    del links

    log.info('Loading network parcels.')
    parcels = load_parcels(database)

    residential = profile_count
    temperatures.extend(apply(profile_count, lambda x: 26.6667))
    profile_count += 1
    commercial = profile_count
    temperatures.extend(apply(profile_count, lambda x: 26.6667))
    profile_count += 1
    other = profile_count
    temperatures.extend(apply(profile_count, lambda x: 26.6667))
    profile_count += 1
    used.add(residential)
    used.add(commercial)
    used.add(other)

    log.info('Applying temperature profiles to parcels.')
    iter_parcels = counter(parcels, 'Applying profile to parcel %s.')
    for parcel in iter_parcels:
        if not parcel.cooling:
            x, y = xy(parcel.center)
            result = index.nearest((x, y, x, y), objects=True)
            profile = next(result).object
            parcel.air_temperature = profile
            used.add(profile)
        elif parcel.kind == 'residential':
            parcel.air_temperature = residential
        elif parcel.kind == 'commercial':
            parcel.air_temperature = commercial
        else:
            parcel.air_temperature = other

    def dump_parcels():
        for parcel in parcels:
            yield (parcel.apn, parcel.air_temperature)

    log.info('Writing updated parcels to database.')
    database.insert_values('temp_parcels', dump_parcels(), 2)
    database.connection.commit()
    del parcels

    def dump_temperatures():
        for temp in temperatures:
            if temp[0] in used:
                yield temp

    log.info('Writing parsed air temperatures to database.')
    database.insert_values('air_temperatures', dump_temperatures(), 4)
    database.connection.commit()
    del temperatures

    log.info('Merging, dropping and renaming old tables.')

    query = '''
        CREATE INDEX temp_links_link
        ON temp_links(link_id);
    '''
    database.cursor.execute(query)
    query = '''
        CREATE TABLE temp_links_merged
        AS SELECT
            links.link_id,
            links.source_node,
            links.terminal_node,
            links.length,
            links.freespeed,
            links.capacity,
            links.permlanes,
            links.oneway,
            links.modes,
            temp_links.air_temperature,
            links.mrt_temperature
        FROM links
        INNER JOIN temp_links
        USING(link_id);
    '''
    database.cursor.execute(query)
    query = '''
        CREATE INDEX temp_parcels_parcel
        ON temp_parcels(apn);
    '''
    database.cursor.execute(query)
    query = '''
        CREATE TABLE temp_parcels_merged
        AS SELECT
            parcels.apn,
            parcels.maz,
            parcels.type,
            parcels.cooling,
            temp_parcels.air_temperature,
            parcels.mrt_temperature,
            parcels.center,
            parcels.region
        FROM parcels
        INNER JOIN temp_parcels
        USING(apn);
    '''
    database.cursor.execute(query)

    original = database.count_rows('links')
    merged = database.count_rows('temp_links_merged')
    if original != merged:
        log.error('Original links and updated links tables '
                  'do not align; quiting to prevent data loss.')
        raise RuntimeError
    else:
        database.drop_table('links', 'temp_links')
        query = '''
            ALTER TABLE temp_links_merged
            RENAME TO links;
        '''
        database.cursor.execute(query)

    original = database.count_rows('parcels')
    merged = database.count_rows('temp_parcels_merged')
    if original != merged:
        log.error('Original parcels and updated parcels tables '
                  'do not align; quiting to prevent data loss.')
        raise RuntimeError
    else:
        database.drop_table('parcels', 'temp_parcels')
        query = '''
            ALTER TABLE temp_parcels_merged
            RENAME TO parcels;
        '''
        database.cursor.execute(query)

    database.connection.commit()

    log.info('Creating indexes on new tables.')
    create_indexes(database)

    log.info('Writing process metadata.')
Beispiel #2
0
def parse_mrt(database: SqliteUtil, path: str, src_epsg: int, prj_epsg: int,
        bounds:int = 30, steps: int = 96):
    log.info('Allocating tables for MRT temperature profiles.')
    create_tables(database)

    log.info('Loading network nodes from database.')
    nodes: Dict[str,Node]
    nodes = load_nodes(database)

    log.info('Loading network links from database.')
    links: Dict[str,Link] 
    links= load_links(database, nodes)

    log.info(f'Searching for mrt files in {path}')
    csvfiles = iter(glob(f'{path}/**/*.csv', recursive=True))

    log.info('Handling initial dataset for profile construction.')
    points: List[Point]
    time: int 
    points, time = parse_points(next(csvfiles), src_epsg, prj_epsg)
    
    log.info('Building spatial index on MRT points.')
    index = Index((point.entry() for point in points))

    log.info('Scanning link bounds and building profiles.')
    mapping: Dict[FrozenSet[int],int] = {}
    count = 0
    empty = 0
    iter_links = counter(links.values(), 'Scanning link %s.')
    for link in iter_links:
        d = link.terminal_node.x * link.source_node.y - \
            link.source_node.x * link.terminal_node.y
        dx = link.terminal_node.x - link.source_node.x
        dy = link.terminal_node.y - link.source_node.y
        l = sqrt(dy * dy + dx * dx)

        nearby = index.intersection(link.bounds(bounds))
        contained = []
        for uuid in nearby:
            point = points[uuid]
            x = point.x
            y = point.y
            if l > 0:
                dist = abs(dy * x - dx * y + d ) / l
            else:
                px = point.x - link.source_node.x
                py = point.y - link.source_node.y
                dist = sqrt(px * px + py * py)
            if dist <= bounds:
                contained.append(point.id)
        
        if contained:
            profile = frozenset(contained)
            if profile in mapping:
                link.profile = mapping[profile]
            else:
                mapping[profile] = count
                link.profile = count
                count += 1
        else:
            empty += 1

    profiles: List[Tuple[int]]
    profiles = [tuple(key) for key in mapping.keys()]

    if empty:
        log.warning(f'Found {empty} links without any MRT temperature profile.')

    def dump_points():
        idx = time // (86400 // steps)
        for uuid, profile in enumerate(profiles):
            mrt, pet, utci = 0, 0, 0
            count = len(profile)
            for ptid in profile:
                point = points[ptid]
                mrt += point.mrt
                pet += point.pet
                utci += point.utci
            yield (uuid, idx, time, mrt / count, pet / count, utci / count)

    def dump_links():
        for link in links.values():
            yield (link.id, link.profile)

    log.info('Writing link updates and temperatures to dataabse.')

    database.insert_values('mrt_temperatures', dump_points(), 6)
    database.insert_values('temp_links', dump_links(), 2)

    log.info('Merging, dropping and renaming old tables.')

    query = '''
        CREATE INDEX temp_links_link
        ON temp_links(link_id);
    '''
    database.cursor.execute(query)
    query = '''
        CREATE TABLE temp_links_merged
        AS SELECT
            links.link_id,
            links.source_node,
            links.terminal_node,
            links.length,
            links.freespeed,
            links.capacity,
            links.permlanes,
            links.oneway,
            links.modes,
            links.air_temperature,
            temp_links.mrt_temperature
        FROM links
        INNER JOIN temp_links
        USING(link_id);
    '''
    database.cursor.execute(query)

    original = database.count_rows('links')
    merged = database.count_rows('temp_links_merged')
    if original != merged:
        log.error('Original links and updated links tables '
            'do not align; quiting to prevent data loss.')
        raise RuntimeError
    
    database.drop_table('links', 'temp_links')
    query = '''
        ALTER TABLE temp_links_merged
        RENAME TO links;
    '''
    database.cursor.execute(query)

    database.connection.commit()

    del links
    del nodes
    del index
    del mapping
    del points

    log.info('Handling remain temperatures with defined profile.')

    def dump_temperaures(time: int, temperatures: List[Tuple[float,float,float]]):
        idx = time // (86400 // steps)
        for uuid, profile in enumerate(profiles):
            mrt, pet, utci = 0, 0, 0
            count = len(profile)
            for tempid in profile:
                temp = temperatures[tempid]
                mrt += temp[0]
                pet += temp[1]
                utci += temp[2]
            yield (uuid, idx, time, mrt / count, pet / count, utci / count)

    for csvfile in csvfiles:
        time: int
        temperatures: List[Tuple[float,float,float]]
        temperatures, time = parse_temperatures(csvfile)

        log.info('Writing temperature data to database.')
        database.insert_values('mrt_temperatures', 
            dump_temperaures(time, temperatures), 6)
        database.connection.commit()

    log.info('Creating indexes on new/updated tables.')
    create_indexes(database)