def read_qrnn(file, inChannels, target): data = iciData(test_file, inChannels, target, batch_size=batchSize) qrnn = QRNN.load(file) y_pre, y_prior, y0, y, y_pos_mean = S.predict(data, qrnn, add_noise=True) return y_pre, y_prior, y0, y, y_pos_mean
def read_qrnn(file, inChannels, target): data = iciData(test_file, inChannels, target, batch_size=batchSize) # read QRNN # file = 'qrnn_ici_%s_%s_%s_single.nc'%(depth, width, target) # print (file) qrnn = QRNN.load(file) y_pre, y_prior, y0, y, y_pos_mean = S.predict(data, qrnn, add_noise=True) return y_pre, y_prior, y0, y, y_pos_mean
inChannels = np.array(['I1V', 'I2V', 'I3V', 'I5V' , 'I6V', 'I7V', 'I8V', 'I9V', 'I10V', 'I11V']) #inChannels = np.array(['I1V', 'I2V', 'I3V', 'MWI-15', 'MWI-16', 'I5V', 'I6V', 'I7V', 'I8V', 'I9V', 'I10V', 'I11V', 'I11H']) inChannels = np.array([target, 'I5V' , 'I6V', 'I7V', 'I8V', 'I9V', 'I10V', 'I11V']) i183, = np.argwhere(inChannels == target)[0] binstep = 0.5 bins = np.arange(-20, 15, binstep) iq = np.argwhere(quantiles == 0.5)[0,0] #%% Uncertainty plot plt.rcParams.update({'font.size': 26}) inChannels = np.array([target, 'I5V' , 'I6V', 'I7V', 'I8V', 'I9V', 'I10V', 'I11V']) i183, = np.argwhere(inChannels == target)[0] data = iciData("TB_ICI_test.nc", inChannels, target, batch_size = batchSize) file = 'qrnn_ici_%s_%s_%s_single.nc'%(depth, width, target) print (file) qrnn = QRNN.load(file) y_pre, y_prior, y0, y, y_pos_mean = S.predict(data, qrnn, add_noise = True) fig, ax = plt.subplots(1, 1, figsize = [8, 8]) x = np.arange(-3, 4, 1) ii = 0 y_all = [] randomList = random.sample(range(0, 24000), 1500) for i in randomList: ii +=1 #for i in ind:
test_file = "TB_ICI_test.nc" binstep = 0.5 bins = np.arange(-20, 20, binstep) iq = np.argwhere(quantiles == 0.5)[0, 0] #%% Plot error of best estimate for all ICI channels fig, ax = plt.subplots(1, 1, figsize=[10, 10], sharex=True) fig1, ax1 = plt.subplots(1, 1, figsize=[10, 10], sharex=True) plt.subplots_adjust(wspace=0.001) for i, target in enumerate(targets): inChannels = np.array( [target, 'I5V', 'I6V', 'I7V', 'I8V', 'I9V', 'I10V', 'I11V']) # inChannels = np.array(['I1V', 'I2V','I3V', 'I5V' , 'I6V', 'I7V', 'I8V', 'I9V', 'I10V', 'I11V']) data = iciData(test_file, inChannels, target, batch_size=batchSize) i183, = np.argwhere(inChannels == target)[0] # read QRNN file = 'qrnn_ici_%s_%s_%s_single.nc' % (depth, width, target) # file = 'qrnn_ici_%s_%s_%s.nc'%(depth, width, target) print(file) qrnn = QRNN.load(file) y_pre, y_prior, y0, y, y_pos_mean, x = predict(data, qrnn, add_noise=True) im = np.abs(y_pre[:, iq] - y_prior[:, i183]) < 5.0 hist_noise, hist_pre, hist_prior, hist_pos_mean, hist_pos_mean_5, hist_filter = \ S.calculate_all_histogram(y, y0, y_pre, y_prior, iq, bins, im, i183)