Beispiel #1
0
 runs[name]['ho'] = {}
 runs[name]['ho']['hist'] = []
 runs[name]['ho']['progress'] = [0]*9999
 runs[name]['ho']['ab_rv'] = {'revenues':[],'lrevenues':[],'abilities':[],'labilities':[]}
 runs[name]['ho']['nn_rv'] = {'revenues':[],'lrevenues':[],'distances':[],'ldistances':[]}
 runs[name]['he'] = {}
 runs[name]['he']['hist'] = []
 runs[name]['he']['progress'] = [0]*9999
 runs[name]['he']['ab_rv'] = {'revenues':[],'lrevenues':[],'abilities':[],'labilities':[]}
 runs[name]['he']['nn_rv'] = {'revenues':[],'lrevenues':[],'distances':[],'ldistances':[]}
 
 for i in range(0,10):
     sim = pickle.load(open("runs/"+name+"i"+str(i)+".pickle", "rb"))
     simHO = sim['ho']
     simHE = sim['he']   
     runs[name]['ho']['hist'] += icon.revenues(simHO['firms'], rkind)
     runs[name]['he']['hist'] += icon.revenues(simHE['firms'], rkind)
     if (len(simHO['progress']) > len(runs[name]['ho']['progress'])):
         runs[name]['ho']['progress'] = numpy.add(runs[name]['ho']['progress'],simHO['progress'][0:len(runs[name]['ho']['progress'])])
     else:
         runs[name]['ho']['progress'] = numpy.add(runs[name]['ho']['progress'][0:len(simHO['progress'])],simHO['progress'])
     if (len(simHE['progress']) > len(runs[name]['he']['progress'])):
         runs[name]['he']['progress'] = numpy.add(runs[name]['he']['progress'],simHE['progress'][0:len(runs[name]['he']['progress'])])
     else:
         runs[name]['he']['progress'] = numpy.add(runs[name]['he']['progress'][0:len(simHE['progress'])],simHE['progress'])
     
     tmp = icon.revenue_by_ability(simHO['firms'],rkind)
     runs[name]['ho']['ab_rv']['lrevenues'] += tmp['lrevenues']
     runs[name]['ho']['ab_rv']['labilities'] += tmp['labilities']
     runs[name]['ho']['ab_rv']['revenues'] += tmp['revenues']
     runs[name]['ho']['ab_rv']['abilities'] += tmp['abilities']
Beispiel #2
0
import matplotlib.pyplot as plt

rkind = 'property'
sim = icon.sim(50,500,0.9,1,rkind)
simHO = sim['ho']
simHE = sim['he']      
ab_rv_HO = icon.revenue_by_ability(simHO['firms'],rkind)
ab_rv_HE = icon.revenue_by_ability(simHE['firms'],rkind)
nn_rv_HO = icon.revenue_by_nn(simHO['firms'],rkind)
nn_rv_HE = icon.revenue_by_nn(simHE['firms'],rkind)

##### plot the sucka
fig1, ((ax,cx),(bx,dx)) = plt.subplots(nrows=2, ncols=2)
fig1.set_facecolor("#ffffff")
ax.set_title("Homogeneous")
ax.hist(icon.revenues(simHO['firms'],rkind))
ax.set_xlabel("revenue (knowledge uncovered)")
ax.set_ylabel("frequency")
bx.plot(range(0,len(simHO['progress'])),simHO['progress'])
bx.set_xlabel("time")
bx.set_ylabel("% discovered")
cx.set_title("Heterogeneous")
cx.hist(icon.revenues(simHE['firms'],rkind))
cx.set_xlabel("revenue (knowledge uncovered)")
cx.set_ylabel("frequency")
dx.plot(range(0,len(simHE['progress'])),simHE['progress'])
dx.set_xlabel("time")
dx.set_ylabel("% discovered")


fig2, ((ex,fx),(gx,hx)) = plt.subplots(nrows=2, ncols=2)
Beispiel #3
0
import icon as icon
import matplotlib.pyplot as plt

rkind = 'property'
sim = icon.sim(25,250,0.9,-1,rkind)
fig, (ax,bx) = plt.subplots(nrows=1, ncols=2)
fig.set_facecolor("#ffffff")

ax.set_title("Homogeneous")
ax.set_xlabel("Revenues")
ax.hist(icon.revenues(sim['ho']['firms'],rkind))
bx.set_title("Heterogeneous")
bx.set_xlabel("Revenues")
bx.hist(icon.revenues(sim['he']['firms'],rkind))


plt.show()