Beispiel #1
0
from sklearn.pipeline import Pipeline

# project-specific helper libraries
import icu_config
import tests

######################################################################
# globals
######################################################################

RANDOM_SEED = 42  # seed for RepeatedStratifiedKFold
EPS = 10 * sys.float_info.epsilon

NRECORDS = 100  # number of patient records
FEATURES_TRAIN_FILENAME, LABELS_TRAIN_FILENAME = \
    icu_config.get_filenames(nrecords=NRECORDS)

METRICS = [
    "accuracy", "auroc", "f1_score", "sensitivity", "specificity", "precision"
]  # sensitivity = recall

######################################################################
# functions
######################################################################


def score(y_true, y_score, metric='accuracy'):
    """
    Calculates the performance metric based on the agreement between the 
    true labels and the predicted labels.
    
Beispiel #2
0
from sklearn.utils import resample
from sklearn.pipeline import Pipeline

# project-specific helper libraries
import icu_config
from icu_practice import score, METRICS
import classifiers

######################################################################
# globals
######################################################################

NRECORDS = 2500  # number of patient records
FEATURES_TRAIN_FILENAME, LABELS_TRAIN_FILENAME, \
    FEATURES_TEST_FILENAME, LABELS_TEST_FILENAME = \
        icu_config.get_filenames(nrecords=NRECORDS, test_data=True)

######################################################################
# functions
######################################################################


def get_test_scores(clf, X, y, n_bootstraps=1, metrics=['accuracy']):
    """
    Estimates the performance of the classifier using the 95% CI.
    
    Parameters
    --------------------
    clf : estimator object
        This is assumed to implement the scikit-learn estimator interface.
        The estimator must already be fitted to data.